版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,五邊形是⊙O的內接正五邊形,則的度數(shù)為(
)A. B. C. D.2、下列語句,錯誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經過圓心 D.平分弧的半徑垂直于弧所對的弦3、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=25°,則∠OCD=(
).A.50° B.40° C.70° D.30°4、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o5、如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.6π﹣ B.6π﹣9 C.12π﹣ D.6、如圖,AB為的直徑,C,D為上的兩點,若,則的度數(shù)為(
)A. B. C. D.7、如圖物體由兩個圓錐組成,其主視圖中,.若上面圓錐的側面積為1,則下面圓錐的側面積為(
)A.2 B. C. D.8、如圖,AB是的直徑,點B是弧CD的中點,AB交弦CD于E,且,,則(
)A.2 B.3 C.4 D.59、有一個圓的半徑為5,則該圓的弦長不可能是(
)A.1 B.4 C.10 D.1110、如圖,在?ABCD中,為的直徑,⊙O和相切于點E,和相交于點F,已知,,則的長為(
)A. B. C. D.2第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.2、如圖,是的直徑,弦于點E,,,則的半徑_______.3、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側面一周又回到點A處,則小蟲所走的最短路程為___________(結果保留根號)4、如圖,在中,的半徑為點是邊上的動點,過點作的一條切線(其中點為切點),則線段長度的最小值為____.5、如圖,一個底面半徑為3的圓錐,母線,D為的中點,一只螞蟻從點A出發(fā),沿著圓錐的側面爬行到D,則螞蟻爬行的最短路程為______.6、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點D為邊AC的中點.以點B為圓心,BD為半徑畫圓弧,交邊BC于點E,則圖中陰影部分圖形的面積為______.a7、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.8、下列說法①直徑是弦;②圓心相同,半徑相同的兩個圓是同心圓;③兩個半圓是等?。虎芙涍^圓內一定點可以作無數(shù)條直徑.正確的是______填序號.9、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點A,半徑為;的圓心為點B,半徑為;的圓心為點C,半徑為;的圓心為點D,半徑為;…的圓心依次按點A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.10、如圖,已知是的直徑,是的切線,連接交于點,連接.若,則的度數(shù)是_________.三、解答題(5小題,每小題6分,共計30分)1、問題探究(1)在中,,分別是與的平分線.①若,,如圖,試證明;②將①中的條件“”去掉,其他條件不變,如圖,問①中的結論是否成立?并說明理由.遷移運用(2)若四邊形是圓的內接四邊形,且,,如圖,試探究線段,,之間的等量關系,并證明.2、如圖,內接于,,,則的直徑等于多少?3、已知,正方形ABCD中,M、N分別為AD邊上的兩點,連接BM、CN并延長交于一點H,連接AH,E為BM上一點,連接AE、CE,∠ECH+∠MNH=90°.(1)如圖1,若E為BM的中點,且DM=3AM,,求線段AB的長.(2)如圖2,若點F為BE中點,點G為CF延長線上一點,且EG//BC,CE=GE,求證:.(3)如圖3,在(1)的條件下,點P為線段AD上一動點,連接BP,作CQ⊥BP于Q,將△BCQ沿BC翻折得到△BCl,點K、R分別為線段BC、Bl上兩點,且BI=3RI,BC=4BK,連接CR、IK交于點T,連接BT,直接寫出△BCT面積的最大值.4、如圖所示,AB是⊙O的直徑,點C為⊙O上一點,過點B作BD⊥CD,垂足為點D,連結BC.BC平分∠ABD.求證:CD為⊙O的切線.5、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個點,==,連接AD,過點D作DE⊥AC交AC的延長線于點E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長.-參考答案-一、單選題1、D【解析】【分析】先根據正五邊形的內角和求出每個內角,再根據等邊對等角得出∠ABE=∠AEB,然后利用三角形內角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內接正五邊形的性質,等腰三角形性質,三角形內角和公式,角的和差計算,掌握圓內接正五邊形的性質,等腰三角形性質,三角形內角和公式,角的和差計算是解題關鍵.2、B【解析】【分析】將每一句話進行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯誤.C.弦的垂直平分線一定經過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.【考點】本題考查了圓中弦、圓心角、弧度之間的關系,熟練掌握該知識點是本題解題的關鍵.3、C【解析】【分析】根據圓周角定理求出∠DOB,根據等腰三角形性質求出∠OCD=∠ODC,根據三角形內角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質,三角形內角和定理的應用,主要考查學生的推理能力,題目比較典型,難度適中.4、A【解析】【分析】在⊙O取點,連接利用圓的內接四邊形的性質與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內接四邊形,.故選A【考點】本題考查的是圓的內接四邊形的性質,同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.5、A【解析】【分析】連接OD,如圖,利用折疊性質得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=6,CD=3,從而得到∠CDO=30°,∠COD=60°,然后根據扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進行計算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點A與點O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=6,∴CD=,∴∠CDO=30°,∠COD=60°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=6π﹣,∴陰影部分的面積為6π﹣.故選A.【考點】本題考查了扇形面積的計算:陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.記住扇形面積的計算公式.也考查了折疊性質.6、B【解析】【分析】連接AD,如圖,根據圓周角定理得到,,然后利用互余計算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關鍵在于能夠熟練掌握相關知識進行求解.7、D【解析】【分析】先證明△ABD為等腰直角三角形得到∠ABD=45°,BD=AB,再證明△CBD為等邊三角形得到BC=BD=AB,利用圓錐的側面積的計算方法得到上面圓錐的側面積與下面圓錐的側面積的比等于AB:CB,從而得到下面圓錐的側面積.【詳解】∵∠A=90°,AB=AD,∴△ABD為等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD為等邊三角形,∴BC=BD=AB,∵上面圓錐與下面圓錐的底面相同,∴上面圓錐的側面積與下面圓錐的側面積的比等于AB:CB,∴下面圓錐的側面積=×1=.故選D.【考點】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了等腰直角三角形和等邊三角形的性質.8、C【解析】【分析】是的直徑,點是弧的中點,從而可知,然后利用勾股定理即可求出的長度.【詳解】解:設半徑為,連接,是的直徑,點是弧的中點,由垂徑定理可知:,且點是的中點,,,由勾股定理可知:,由勾股定理可知:,解得:,故選:C.【考點】本題考查垂徑定理,解題的關鍵是正確理解垂徑定理以及勾股定理,本題屬于中等題型9、D【解析】【分析】根據圓的半徑為5,可得到圓的最大弦長為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長弦長為10,則不可能是11.故選:D.【考點】本題主要考查了圓的基本性質,理解圓的直徑是圓的最長的弦是解題的關鍵.10、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點】本題考查切線的性質、平行四邊形的性質、弧長公式等知識,解題的關鍵是求出圓心角的度數(shù),記住弧長公式.二、填空題1、8.【解析】【分析】連結OA,OB,點是的中點,半徑交弦于點,根據垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關鍵.2、【解析】【分析】設半徑為r,則,得到,由垂徑定理得到,再根據勾股定理,即可求出答案.【詳解】解:由題意,設半徑為r,則,∵,∴,∵是的直徑,弦于點E,∴點E是CD的中點,∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點】本題考查了垂徑定理,勾股定理,解題的關鍵是熟練掌握垂徑定理和勾股定理進行解題.3、6【解析】【分析】利用圓錐的底面周長等于側面展開圖的弧長可得圓錐側面展開圖的圓心角,求出側面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設圓錐的側面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側面展開圖中兩點間距離的求法;把立體幾何轉化為平面幾何來求是解決本題的突破點.4、【解析】【分析】如圖:連接OP、OQ,根據,可得當OP⊥AB時,PQ最短;在中運用含30°的直角三角形的性質和勾股定理求得AB、AQ的長,然后再運用等面積法求得OP的長,最后運用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當OP⊥AB時,如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點】本題考查了切線的性質、含30°直角三角形的性質、勾股定理等知識點,此正確作出輔助線、根據勾股定理確定當PO⊥AB時、線段PQ最短是解答本題的關鍵.5、【解析】【分析】先畫出圓錐側面展開圖(見解析),再利用弧長公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質、勾股定理可得,最后根據兩點之間線段最短即可得.【詳解】畫出圓錐側面展開圖如下:如圖,連接AB、AD,設圓錐側面展開圖的圓心角的度數(shù)為,因為圓錐側面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點D是BC的中點,,,在中,,由兩點之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點】本題考查了圓錐側面展開圖、弧長公式、等邊三角形的判定與性質等知識點,熟練掌握圓錐側面展開圖是解題關鍵.6、【解析】【分析】先根據直角三角形斜邊上的中線性質得到BD=CD=9,則∠DBC=∠C=22°,然后根據扇形的面積公式計算.【詳解】解:∵∠ABC=90°,點D為邊AC的中點,∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點】本題考查了扇形面積的計算:設圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長).也考查了直角三角形斜邊上的中線性質.7、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關鍵是求出圓上的點到直線AB的最大距離.8、①【解析】【分析】利用圓的有關定義及性質分別判斷后即可確定正確的選項.【詳解】解:直徑是弦,但弦不是直徑,故①正確;圓心相同但半徑不同的兩個圓是同心圓,故②錯誤;若兩個半圓的半徑不等,則這兩個半圓的弧長不相等,故③錯誤;經過圓的圓心可以作無數(shù)條的直徑,故④錯誤.綜上,正確的只有①.故答案為:①【考點】本題考查了圓的知識,了解有關圓的定義及性質是解答本題的關鍵,難度不大.9、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點】此題主要考查了弧長的計算,弧長的計算公式:,找到每段弧的半徑變化規(guī)律是解題關鍵.10、25【解析】【分析】先由切線的性質可得∠OAC=90°,再根據三角形的內角和定理可求出∠AOD=50°,最后根據“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點】本題考查了切線的性質和圓周角定理,掌握圓周角定理是解題的關鍵.三、解答題1、(1)①見解析;②結論成立,見解析;(2),見解析【解析】【分析】(1)①證明是等邊三角形,得出E、D為中點,從而證明;②在上截取,根據角平分線的性質,證明,,從而得到答案;(2)作點B關于的對稱點E,證明,從而得到,再根據AE、DC分別是、的角平分線,得到.【詳解】(1)①,,.又、分別是、的平分線.點D、E分別是、的中點.,..②結論成立,理由如下:設與交于點F,由條件,得,.又...∴.在上截取.由∵BF=BF,∴...又∵CF=CF,∴.∴.(2),理由如下:∵四邊形是圓內接四邊形,∴.∵,∴,,∴.∴.作點B關于的對稱點E,連結,,的延長線與的延長線交于點M,與交于點F,∴,.∴.∴∴∴∵AE、DC分別是、的角平分線由②得.【考點】本題考查三角形、等邊三角形、全等三角形、圓的內接四邊形的性質,解題的關鍵是熟練掌握三角形、等邊三角形、全等三角形、圓的內接四邊形的相關知識.2、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理,掌握這些知識點是解題關鍵.3、(1)4(2)證明見解析(3)【解析】【分析】(1)由正方形ABCD的性質,可得到△ABM為直角三角形,再由E為BM中點,得到BM=2AE,最后由勾股定理求得AB的長度;(2)過點A作AY⊥BH于點Y,由EG∥BC,CE=GE,F(xiàn)為BE中點,可得△GEF≌△CBF,從而得到△BCE為等腰三角形,再根據角的關系,易得∠ECG+∠ECH=∠BCD=45°,得到△HFC為等腰直角三角形,再根據△ABY≌△BCF,得到BM=CF,AY=BF,從而轉化得到結論;(3)當P、D重合時得到最大面積,以B為原點建立直角坐標系,求出坐標和表達式,聯(lián)立方程組求解,即可得出答案.(1)解:∵四邊形ABCD為正方形,且DM=3AM,∴∠BAM=90°,AD=AB=4AM,∴△ABM為直角三角形,∵E為BM的中點,,∴BM=2AE=,在Rt△ABM中,設AM=x,則AB=4x,∴,解得,∴AB=4;(2)過點A作AY⊥BH于點Y,∵EG//BC,CE=GE,∴∠G=∠BCG=∠ECG,∵F為BE的中點,∴△GEF≌△CBF(AAS),∴GE=BC,△BCE為等腰三角形,∴CF⊥BE,∠CFE=90°;∵∠ECH+∠MNH=90°,∠MNH=∠CND,∠CND+∠NCD=90°,∴∠ECH=∠NCD,∴∠ECG+∠ECH=∠BCD=45°,∴△HFC為等腰直角三角形,∴CF=HF;∵∠ABE+∠CBE=90°,∠CBE+∠BCF=90°,∴∠ABE=∠BCF,∵AB=BC,∠AYB=∠BFC=90°,∴△ABY≌△BCF(AAS),∴BY=CF,AY=BF,∴BY=HF∴BY-FY=HF-FY∴BF=HY=AY,∴△AHY是等腰直角三角形,∴,∴,∴;(3)∵∠BQC=90°,∴點Q在以BC為直徑的半圓弧上運動,當P點與D點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年黑龍江大慶市中考語文試題解讀及備考指導
- 黑龍江省綏化市海倫市2025-2026學年七年級上學期1月期末考試語文試卷(無答案)
- 廣東省湛江雷州市2025-2026學年上學期期末七年級語文試卷(無答案)
- 2025秋人教版二年級數(shù)學上冊期末復習專項拔高卷(含答案)
- 五官科題庫及答案
- 微機原理試題庫及答案
- 三年級下冊第八單元寫作指導這樣想象真有趣人教部編版
- 北京版六年級下冊數(shù)學第二單元比和比例測試卷附參考答案【預熱題】
- 在市民政工作半年總結會議上的工作報告全國民政工作會議
- 防雷系統(tǒng)設計安裝技術要點
- 超星爾雅學習通《學術規(guī)范與學術倫理(華東師范大學)》2025章節(jié)測試附答案
- GB 17440-2025糧食加工、儲運系統(tǒng)粉塵防爆安全規(guī)范
- 《綠色農產品認證》課件
- 衛(wèi)生院、社區(qū)衛(wèi)生服務中心《死亡醫(yī)學證明書》領用、發(fā)放、管理制度
- 《金融科技概論》完整全套課件
- 校車逃生安全知識
- 膠體與界面化學
- 康復治療技術歷年真題單選題100道及答案
- 深圳益電通變頻器說明書TD90
- 2024至2030年中國公安信息化與IT行業(yè)發(fā)展形勢分析及運行策略咨詢報告
- 糧食采購合同范文
評論
0/150
提交評論