版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°2、已知,則為(
)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能3、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(
)A.6 B.5 C.4 D.4、如圖,把沿線段折疊,使點(diǎn)落在點(diǎn)處;若,,,則的度數(shù)為(
)A. B. C. D.5、如圖為了測(cè)量B點(diǎn)到河對(duì)面的目標(biāo)A之間的距離,在B點(diǎn)同側(cè)選擇了一點(diǎn)C,測(cè)得∠ABC=65°,∠ACB=35°,然后在M處立了標(biāo)桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測(cè)得MB的長就是A,B兩點(diǎn)間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA6、如圖是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,說明的依據(jù)是(
)A. B. C. D.7、如圖,在中,點(diǎn)D是BC邊上一點(diǎn),已知,,CE平分交AB于點(diǎn)E,連接DE,則的度數(shù)為(
)A. B. C. D.8、有一個(gè)小口瓶(如圖所示),想知道它的內(nèi)徑是多少,但是尺子不能伸到里邊直接測(cè),于是拿兩根長度相同的細(xì)木條,把兩根細(xì)木條的中點(diǎn)固定在一起,木條可以繞中點(diǎn)轉(zhuǎn)動(dòng),這樣只要量出AB的長,就可以知道玻璃瓶的內(nèi)徑是多少,那么△OAB≌△OCD理由是(
)A.邊角邊 B.角邊角 C.邊邊邊 D.角角邊9、如圖,點(diǎn)O是△ABC中∠BCA,∠ABC的平分線的交點(diǎn),已知△ABC的面積是12,周長是8,則點(diǎn)O到邊BC的距離是(
)A.1 B.2C.3 D.410、如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=7cm,則△DBE的周長是(
)A.6cm B.7cm C.8cm D.9cm第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,四邊形ABCD≌四邊形A′B′C′D′,則∠A的大小是______.2、如圖,已知在△ABD和△ABC中,∠DAB=∠CAB,點(diǎn)A、B、E在同一條直線上,若使△ABD≌△ABC,則還需添加的一個(gè)條件是______.(只填一個(gè)即可)3、如圖,平分,.填空:因?yàn)槠椒郑訽_______.從而________.因此________.4、如圖,在矩形ABCD中,AB=8cm,AD=12cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC邊向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C停止,同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以vcm/s的速度沿CD邊向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止,規(guī)定其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)v為______時(shí),△ABP與△PCQ全等.5、如圖,在△ABC中,,AC=8cm,BC=10cm.點(diǎn)C在直線l上,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿A→C的路徑向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)A運(yùn)動(dòng).點(diǎn)P和點(diǎn)Q分別以每秒1cm和2cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也停止運(yùn)動(dòng),分別過點(diǎn)P和Q作PM⊥直線l于M,QN⊥直線l于N.則點(diǎn)P運(yùn)動(dòng)時(shí)間為____秒時(shí),△PMC與△QNC全等.6、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.7、如圖,在中,,F(xiàn)是高AD和BE的交點(diǎn),cm,則線段BF的長度為______.8、如圖,已知,,添加一個(gè)條件,使,你添加的條件是______(填一個(gè)即可).9、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.10、如圖,△ABC≌△DBE,△ABC的周長為30,AB=9,BE=8,則AC的長是__.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知線段a、b和,用尺規(guī)作一個(gè)三角形,使.(要求:不寫已知、求作、作法、只畫圖,保留作圖痕跡)2、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.3、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長線上時(shí),求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時(shí),BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME4、如圖,A,B,C,D依次在同一條直線上,,BF與EC相交于點(diǎn)M.求證:.5、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大?。唬?)若EF⊥AE交AC于F,求證:∠C=2∠FEC.-參考答案-一、單選題1、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運(yùn)用.2、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點(diǎn)】此題考查的是直角三角形的判定,掌握有兩個(gè)內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.3、D【解析】【分析】根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識(shí)進(jìn)行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點(diǎn)】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應(yīng)用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.4、C【解析】【分析】由于折疊,可得三角形全等,運(yùn)用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點(diǎn)落在點(diǎn)處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對(duì)應(yīng)角相等就可以解決.5、D【解析】【分析】利用全等三角形的判定方法進(jìn)行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點(diǎn)】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.6、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點(diǎn)】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.7、B【解析】【分析】過點(diǎn)E作于M,于N,于H,如圖,先計(jì)算出,則AE平分,根據(jù)角平分線的性質(zhì)得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質(zhì)解答即可.【詳解】解:過點(diǎn)E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點(diǎn)】本題考查了角平分線的性質(zhì)和判定定理,三角形的外角性質(zhì)定理,解決本題的關(guān)鍵是運(yùn)用角平分線定理的逆定理證明DE平分.8、A【解析】【詳解】解:∵根據(jù)SAS得:△OAB≌△ODC.故選A.9、C【解析】【分析】過點(diǎn)O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長是8,即可得出點(diǎn)O到邊BC的距離.【詳解】如圖,過點(diǎn)O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點(diǎn)O是∠ABC,∠ACB平分線的交點(diǎn),∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點(diǎn)】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點(diǎn)到角的兩邊的距離相等,正確表示出三角形面積是解題關(guān)鍵.10、B【解析】【分析】由在△ABC中,∠C=90°,AC=BC,∠BAC的平分線AD交BC于D,DE⊥AB于E,根據(jù)角平分線的性質(zhì),可得CD=ED,AC=AE=BC,繼而可得△DBE的周長=AB.【詳解】∵在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,DE⊥AB于E,∴CD=ED,∠ADC=∠ADE,∴AE=AC,∵AC=BC,∴BC=AE,∴△DBE的周長是:BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=7cm.故選B.【考點(diǎn)】此題考查了角平分線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.二、填空題1、95°【解析】【分析】根據(jù)兩個(gè)多邊形全等,則對(duì)應(yīng)角相等四邊形以及內(nèi)角和即可完成【詳解】∵四邊形ABCD≌四邊形A′B′C′D′∴∠D=∠D′=130゜∵四邊形ABCD的內(nèi)角和為360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案為:95゜【考點(diǎn)】本題考查了多邊形全等的性質(zhì)、多邊形的內(nèi)角和定理,掌握多邊形全等的性質(zhì)是關(guān)鍵.2、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加條件即可求解.【詳解】解:∵∠DAB=∠CAB,AB=AB,∴當(dāng)添加AD=AC時(shí),可根據(jù)“SAS”判斷△ABD≌△ABC;當(dāng)添加∠D=∠C時(shí),可根據(jù)“AAS”判斷△ABD≌△ABC;當(dāng)添加∠ABD=∠ABC時(shí),可根據(jù)“ASA”判斷△ABD≌△ABC.故答案為AD=AC(∠D=∠C或∠ABD=∠ABC等).【考點(diǎn)】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,選用哪一種方法,取決于題目中的已知條件.3、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯(cuò)角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點(diǎn)】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.4、2或【解析】【詳解】可分兩種情況:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分別計(jì)算出t的值,進(jìn)而得到v的值.【解答】解:①當(dāng)BP=CQ,AB=PC時(shí),△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②當(dāng)BA=CQ,PB=PC時(shí),△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,綜上所述,當(dāng)v=2或時(shí),△ABP與△PQC全等,故答案為:2或.【考點(diǎn)】此題考查了動(dòng)點(diǎn)問題,全等三角形的性質(zhì)的應(yīng)用,解一元一次方程,正確理解全等三角形的性質(zhì)得到相等的對(duì)應(yīng)邊求出t是解題的關(guān)鍵.5、2或6或6或2【解析】【分析】設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,根據(jù)題意化成兩種情況,由全等三角形的性質(zhì)得出,列出關(guān)于t的方程,求解即可.【詳解】解:設(shè)運(yùn)動(dòng)時(shí)間為t秒時(shí),△PMC≌△CNQ,∴斜邊,分兩種情況:①如圖1,點(diǎn)P在AC上,點(diǎn)Q在BC上,圖1∵,,∴,,∵,∴,∴;②如圖2,點(diǎn)P、Q都在AC上,此時(shí)點(diǎn)P、Q重合,圖2∵,,∴,∴;綜上所述,點(diǎn)P運(yùn)動(dòng)時(shí)間為2或6秒時(shí),△PMC與△QNC全等,故答案為:2或6.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,根據(jù)題意判斷兩三角形全等的條件是解題關(guān)鍵,同時(shí)要注意分情況討論,解題時(shí)避免遺漏答案.6、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點(diǎn)】此題考查三角形全等的性質(zhì)定理:全等三角形的對(duì)應(yīng)角相等,三角形的內(nèi)角和定理.7、8cm【解析】【分析】先求,推導(dǎo)出,再求出,,根據(jù)ASA證明,即可得出答案.【詳解】∵,,∴,∴,∴,∵,,∴,在△BFD和△ACD中,∴(ASA),∴cm故答案為:8cm【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)邊相等.8、(答案不唯一)【解析】【分析】此題是一道開放型的題目,答案不唯一,先根據(jù)∠BCE=∠ACD求出∠BCA=∠DCE,再根據(jù)全等三角形的判定定理SAS推出即可.【詳解】解:添加的條件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案為:CB=CE(答案不唯一).【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL等.9、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點(diǎn)】本題考查了角平分線的判定,掌握角平分線的判定是解題的關(guān)鍵.10、13【解析】【分析】根據(jù)全等三角形的性質(zhì)求出BC,根據(jù)三角形的周長公式計(jì)算,得到答案.【詳解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周長為30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案為:13.【考點(diǎn)】此題主要考查全等三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的性質(zhì).三、解答題1、見解析【解析】【分析】先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點(diǎn),即可.【詳解】解:先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點(diǎn),連接,即為所求,如圖所示:【考點(diǎn)】本題考查了復(fù)雜作圖,利用了作一個(gè)角等于已知角,作線段等于已知線段,是基本作圖,需熟練掌握.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.2、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點(diǎn)睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,解答此題的關(guān)鍵是正確作輔助線,又是難點(diǎn),解題的思路是把AD和CD放到一個(gè)三角形中,根據(jù)等腰三角形的判定進(jìn)行證明,題型較好,有一定的難度.3、(1)見解析(2)①90°;②見解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后證明△CAD≌△BAE得到∠ABE=∠C=45°,則∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可證△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,證明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD≌△BAE(SAS),∴∠ABE=∠C=45°,∴∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)解:①同理可證△BAE≌△CAD,∠ABC=∠ACB=90°,∴∠ABE=∠ACD,∵∠EMC=∠EBC+∠BCD,∴∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,∵△BAE≌△CAD,∴AG=AF,在Rt△AGM和Rt△AFM中,,∴Rt△AGM≌Rt△AFM(HL),∴∠AMG=∠AMF,即AM平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 深度解析(2026)《GBT 19314.1-2003小艇 艇體結(jié)構(gòu)和構(gòu)件尺寸 第1部分材料熱固性樹脂、玻璃纖維增強(qiáng)塑料、基準(zhǔn)層合板》
- 軟件測(cè)試職位面試常見問題及答案
- 節(jié)能燈具照明節(jié)電器項(xiàng)目可行性研究報(bào)告(立項(xiàng)備案申請(qǐng))
- 環(huán)境暴露研究臨床試驗(yàn)的遠(yuǎn)程污染物監(jiān)測(cè)技術(shù)
- 年產(chǎn)xxx城市車項(xiàng)目可行性分析報(bào)告
- 特殊職業(yè)人群糖尿病前期干預(yù)模式
- 特殊群體(殘障人士)醫(yī)療志愿服務(wù)適配方案
- 不銹鋼櫥柜項(xiàng)目可行性分析報(bào)告范文
- 帳篷建設(shè)項(xiàng)目可行性分析報(bào)告(總投資10000萬元)
- 建筑師技能考試題含答案
- 2025年湖北省中小學(xué)教師招聘考試筆試試題(附答案)
- 紀(jì)檢辦案安全課件講義
- 機(jī)械三視圖培訓(xùn)課件
- 環(huán)衛(wèi)部門冬季安全作業(yè)培訓(xùn)課件
- 合成洗滌劑制造工作業(yè)指導(dǎo)書
- 托盤貨架培訓(xùn)課件
- 胎兒右位主動(dòng)脈弓伴鏡像分支超聲診斷
- 種植產(chǎn)業(yè)項(xiàng)目管理制度
- 房地產(chǎn)開發(fā)專項(xiàng)資金審計(jì)重點(diǎn)與流程
- 2025年高中音樂美術(shù)學(xué)業(yè)考核試題
- 華南理工大學(xué)2019級(jí)大學(xué)物理(II)期末試卷
評(píng)論
0/150
提交評(píng)論