難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試題_第1頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試題_第2頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試題_第3頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試題_第4頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試試題_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.52、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.53、平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=OC=,則點(diǎn)B的坐標(biāo)為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)4、如圖,矩形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,若∠AOD=120°,AC=16,則AB的長(zhǎng)為()A.16 B.12 C.8 D.45、如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°6、如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.57、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是()A.當(dāng)?ABCD是矩形時(shí),∠ABC=90° B.當(dāng)?ABCD是菱形時(shí),AC⊥BDC.當(dāng)?ABCD是正方形時(shí),AC=BD D.當(dāng)?ABCD是菱形時(shí),AB=AC8、如圖,把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,再過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長(zhǎng)為2,則FM的長(zhǎng)為()A.2 B. C. D.19、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.10、如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點(diǎn)H,點(diǎn)G為DE的中點(diǎn),連接GH,則GH的長(zhǎng)為()A. B. C.4.5 D.4.3第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長(zhǎng)為_(kāi)_________.2、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動(dòng)點(diǎn),則PE+PF的最小值是_____.3、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開(kāi)線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點(diǎn)A,O,B,C循環(huán),點(diǎn)A的坐標(biāo)為(2,0),按此規(guī)律進(jìn)行下去,則點(diǎn)P2021的坐標(biāo)為_(kāi)____.4、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為_(kāi)____.5、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____6、如圖,四邊形和四邊形都是邊長(zhǎng)為4的正方形,點(diǎn)是正方形對(duì)角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過(guò)程中分別交,于點(diǎn),,則四邊形的面積為_(kāi)_____.7、如圖,將n個(gè)邊長(zhǎng)都為1的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個(gè)正方形重疊形成的重疊部分的面積和為_(kāi)____.8、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.9、如圖,平面直角坐標(biāo)系中,有,,三點(diǎn),以A,B,O三點(diǎn)為頂點(diǎn)的平行四邊形的另一個(gè)頂點(diǎn)D的坐標(biāo)為_(kāi)_____.10、如圖,△ABC中,D、E分別是AB、AC的中點(diǎn),若DE=4cm,則BC=_____cm.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形中,為對(duì)角線.(1)用尺規(guī)完成以下作圖:在上找一點(diǎn),使,連接,作的平分線交于點(diǎn);(保留作圖痕跡,不寫(xiě)作法)(2)在(1)所作的圖形中,若,求的度數(shù).2、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說(shuō)明理由.(3)問(wèn)題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫(xiě)出線段CP的長(zhǎng).3、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過(guò)點(diǎn)A作射線l∥BC,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿射線l運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),作∠PCB的平分線交射線l于點(diǎn)D,記點(diǎn)D關(guān)于射線CP的對(duì)稱點(diǎn)是點(diǎn)E,連接AE、PE、BP.(1)求證:PC=PD;(2)當(dāng)△PBC是等腰三角形時(shí),求t的值;(3)是否存在點(diǎn)P,使得△PAE是直角三角形,如果存在,請(qǐng)直接寫(xiě)出t的值,如果不存在,請(qǐng)說(shuō)明理由.4、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點(diǎn)E是邊BC延長(zhǎng)線上一點(diǎn),連接AE、DE,過(guò)點(diǎn)C作CF⊥DE于點(diǎn)F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.5、如圖,?ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問(wèn)題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).2、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.3、C【解析】【分析】作,求得、的長(zhǎng)度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點(diǎn)睛】此題考查了平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是靈活運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.4、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.5、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點(diǎn)睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.6、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長(zhǎng)是解題的關(guān)鍵.7、D【解析】【分析】由矩形的四個(gè)角是直角可判斷A,由菱形的對(duì)角線互相垂直可判斷B,由正方形的對(duì)角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時(shí),∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時(shí),AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時(shí),AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時(shí),AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.8、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).9、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.10、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個(gè)角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進(jìn)一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長(zhǎng)即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點(diǎn)G為DE的中點(diǎn),∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.二、填空題1、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長(zhǎng),從而可求得菱形的周長(zhǎng).【詳解】∵四邊形ABCD是菱形,且對(duì)角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長(zhǎng)為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長(zhǎng)等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.2、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過(guò)M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過(guò)M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,此時(shí)P′E′+P′F=ME′,過(guò)點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對(duì)稱?最短問(wèn)題等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.3、(4044,0)【解析】【分析】由題意可知:正方形的邊長(zhǎng)為2,分別求得,可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點(diǎn)P2021在x軸正半軸,進(jìn)而求得OP的長(zhǎng)度,即可求得點(diǎn)的坐標(biāo).【詳解】由題意可知:正方形的邊長(zhǎng)為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點(diǎn)P2021在x軸正半軸,OP的長(zhǎng)度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系點(diǎn)的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.4、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.5、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.6、4【解析】【分析】過(guò)點(diǎn)O作OG⊥AB,垂足為G,過(guò)點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過(guò)點(diǎn)O作OG⊥AB,垂足為G,過(guò)點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對(duì)角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計(jì)算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計(jì)算面積是解題的關(guān)鍵.7、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為(n-1)個(gè)陰影部分的和.【詳解】解:由題意可得一個(gè)陰影部分面積等于正方形面積的,即是,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.8、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識(shí),掌握折疊的性質(zhì)是解題的關(guān)鍵.9、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標(biāo)相等,根據(jù)B的橫坐標(biāo)和BO的值即可求出D的橫坐標(biāo).【詳解】∵平行四邊形ABCD的頂點(diǎn)A、B、O的坐標(biāo)分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標(biāo)是3+6=9,縱坐標(biāo)是4,即D的坐標(biāo)是(9,4),同理可得出D的坐標(biāo)還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對(duì)邊平行且相等.10、8【解析】【分析】運(yùn)用三角形的中位線的知識(shí)解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點(diǎn)∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點(diǎn)睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.三、解答題1、(1)圖形見(jiàn)解析;(2)【分析】(1)利用尺規(guī)根據(jù)題意即可完成作圖;

(2)結(jié)合(1)根據(jù)等腰三角形的性質(zhì)和三角形外角定理可得的度數(shù).【詳解】(1)如圖,點(diǎn)E和點(diǎn)F即為所求;

(2)∵,∠ABD=68°,

∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,

∴∠EAD=90°-44°=46°,

∵AF平分∠DAE,

∴∠FAE=∠DAE=23°,

∴【點(diǎn)睛】題考查了尺規(guī)作圖-作角平分線,矩形的性質(zhì),熟練掌握5種基本作圖是解決此類問(wèn)題的關(guān)鍵.2、(1)PD=PC,PD⊥PC;(2)成立,見(jiàn)解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過(guò)點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時(shí)和當(dāng)點(diǎn)E在BC的下方時(shí),過(guò)點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點(diǎn)P為AE的中點(diǎn),∴,∴,,∴,∴故答案為:,.(2)結(jié)論成立.理由如下:過(guò)點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O.則∴,∴,,由勾股定理可得:∴∴∴∵點(diǎn)P為AE的中點(diǎn),∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當(dāng)點(diǎn)E在BC的上方時(shí),過(guò)點(diǎn)P作PQ⊥BC于Q.則,∴∵∴由(2)可得,,,∴為等腰直角三角形∴∴由勾股定理得,如圖3﹣2中,當(dāng)點(diǎn)E在BC的下方時(shí),同法可得PC=PD=2.綜上所述,PC的長(zhǎng)為4或2.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì),做輔助線,構(gòu)造出全等三角形.3、(1)見(jiàn)解析;(2)t=1或或;(3)存在,△PAE是直角三角形時(shí)t=或【分析】(1)根據(jù)平行線的性質(zhì)可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當(dāng)BP=BC=4cm時(shí),當(dāng)PC=BC=4cm時(shí),當(dāng)PC=PB時(shí)三種情況討論求解即可;(3)分當(dāng)∠PAE=90°時(shí),當(dāng)∠APE=90°時(shí),當(dāng)∠AEP=90°時(shí),三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三種情況:①當(dāng)BP=BC=4cm時(shí),作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當(dāng)PC=BC=4cm時(shí),由勾股定理,即,解得;③當(dāng)PC=PB時(shí),P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當(dāng)t=1或或時(shí),△PBC是等腰三角形;(3

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論