人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試題(含詳細解析)_第1頁
人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試題(含詳細解析)_第2頁
人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試題(含詳細解析)_第3頁
人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試題(含詳細解析)_第4頁
人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試題(含詳細解析)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版9年級數(shù)學上冊【旋轉】章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,將繞點A按順時針旋轉一定角度得到,點B的對應點D恰好落在BC邊上,若,,則CD的長為(

).A. B. C. D.12、在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是(

)A.① B.② C.③ D.④3、已知點P坐標為,將線段OP繞原點O逆時針旋轉90°得到線段,則點P的對應點的坐標為(

)A. B. C. D.4、如圖,點A,B的坐標分別為(1,1)、(3,2),將△ABC繞點A按逆時針方向旋轉90°,得到△A'B'C',則B'點的坐標為(

)A.(﹣1,3) B.(-1,2) C.(0,2) D.(0,3)5、下列交通標識中,不是軸對稱圖形,是中心對稱圖形的是()A. B. C. D.6、將矩形繞點順時針旋轉,得到矩形.當時,下列針對值的說法正確的是(

)A.或 B.或 C. D.7、如圖,在△ABC中,AB=AC,若M是BC邊上任意一點,將△ABM繞點A逆時針旋轉得到△ACN,點M的對應點為點N,連接MN,則下列結論一定正確的是(

)A. B. C. D.8、如圖,六邊形ABCDEF的內角都相等,∠DAB=60°,AB=DE,則下列結論:①AB∥DE;②EF∥AD∥BC;③AF=CD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.其中成立的個數(shù)是()A.2個 B.3個 C.4個 D.5個9、圖,在中,,將繞頂點順時針旋轉到,當首次經過頂點時,旋轉角(

)A.30° B.40° C.45° D.60°10、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A按順時針方向旋轉90°后得到△AFB,連接EF,有下列結論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、若點與關于原點對稱,則__.2、如圖,正比例函數(shù)y=kx(k≠0)的圖像經過點A(2,4),AB⊥x軸于點B,將△ABO繞點A逆時針旋轉90°得到△ADC,則直線AC的函數(shù)表達式為_____.3、將點繞原點O順時針旋轉得到點,則點落在第____________象限.4、如圖,正方形的邊長為4,點E是對角線上的動點(點E不與A,C重合),連接交于點F,線段繞點F逆時針旋轉得到線段,連接.下列結論:①;②;③若四邊形的面積是正方形面積的一半,則的長為;④.其中正確的是_________.(填寫所有正確結論的序號)5、如圖,正方形ABCD的邊長是5,E是邊BC上一點且BE=2,F(xiàn)為邊AB上的一個動點,連接EF,以EF為邊向右作等邊三角形EFG,連接CG,則CG長的最小值為______.6、如圖,P是正方形ABCD內一點,將繞點B順時針方向旋轉,能與重合,若,則______.7、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內旋轉,點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.8、如圖,將正方形網格放置在平面直角坐標系中,其中,每個小正方形的邊長均為1,點A,B,C的坐標分別為,,.是關于軸的對稱圖形,將繞點逆時針旋轉180°,點的對應點為M,則點M的坐標為________.9、已知,正六邊形ABCDEF在直角坐標系內的位置如圖所示,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2022次翻轉之后,點B的坐標是______.10、若點與點關于原點對稱,則______;三、解答題(6小題,每小題5分,共計30分)1、如圖,先將繞點順時針旋轉得到,再將線段繞點順時針旋轉得到,連接、、,且.(1)若.①求證:、、三點共線;②求的長;(2)若,,點在邊上,求線段的最小值.2、如圖,正方形網格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內,的三個頂點分別為,,.(1)畫出關于原點對稱的,并寫出點的坐標;(2)畫出繞點順時針旋轉后得到的,并寫出點的坐標.3、明遇到這樣一個問題:如圖①,在四邊形ABCD中,∠B=40°,∠C=50°,AB=CD,AD=2,BC=4,求四邊形ABCD的面積.(1)經過思考小明想到如下方法:以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,則四邊形ADEF是________.(填一種特殊的平行四邊形)∴S四邊形ABCD=________.(2)解決問題:如圖③,在四邊形ABCD中,∠BAD=140°,∠CDA=160°,AB=CD,AD=6,BC=12,則四邊形ABCD的面積為多少?4、將矩形ABCD繞著點C按順時針方向旋轉得到矩形FECG,其中點E與點B,點G與點D分別是對應點,連接BG.(1)如圖,若點A,E,D第一次在同一直線上,BG與CE交于點H,連接BE.①求證:BE平分∠AEC.②取BC的中點P,連接PH,求證:PHCG.③若BC=2AB=2,求BG的長.(2)若點A,E,D第二次在同一直線上,BC=2AB=4,直接寫出點D到BG的距離.5、如圖,點E為正方形外一點,,將繞A點逆時針方向旋轉得到的延長線交于H點.(1)試判定四邊形的形狀,并說明理由;(2)已知,求的長.6、在平面直角坐標系中已知拋物線經過點和點,點為拋物線的頂點.(1)求拋物線的表達式及點的坐標;(2)將拋物線關于點對稱后的拋物線記作,拋物線的頂點記作點,求拋物線的表達式及點的坐標;(3)是否在軸上存在一點,在拋物線上存在一點,使為頂點的四邊形是平行四邊形?若存在,請求出點坐標,若不存在,請說明理由.-參考答案-一、單選題1、D【解析】【分析】根據直角三角形兩銳角互余可得∠C=30°,根據含30°角的直角三角形的性質可求出BC的長,然后根據旋轉的性質可得AB=AD,然后判斷出△ABD是等邊三角形,根據等邊三角形的三條邊都相等可得BD=AB,然后根據CD=BC-BD計算即可得解.【詳解】解:∵∠B=60°,∴∠C=90°-60°=30°,∵AB=1,∴BC=2AB=2,由旋轉的性質得,AB=AD,∴△ABD是等邊三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故選:D.【考點】本題考查了旋轉的性質,含30°角的直角三角形的性質,等邊三角形的判定與性質,熟記性質并判斷出△ABD是等邊三角形是解題的關鍵.2、B【解析】【分析】直接利用中心對稱圖形的性質得出答案即可.【詳解】解:如圖,把標有序號②的白色小正方形涂黑,就可以使圖中的黑色部分構成一個中心對稱圖形,故選B.【考點】本題考查了利用旋轉設計圖案和中心對稱圖形的定義,要知道,一個圖形繞端點旋轉180°所形成的圖形叫中心對稱圖形.3、B【解析】【分析】如圖,作軸于,軸于,證明,有,,進而可得點坐標.【詳解】解:如圖,作軸于,軸于,∵,∴在和中∵∴∴,∴故選B.【考點】本題考查了繞原點旋轉90°的點坐標,三角形全等的判定與性質.解題的關鍵在于熟練掌握旋轉的性質.4、D【解析】【分析】根據題意畫出圖形,然后結合直角坐標系即可得出B'的坐標.【詳解】解:如圖,根據圖形可得:點B′坐標為(0,3),故選:D.【考點】本題考查了旋轉作圖的知識及旋轉后坐標的變化,解答本題的關鍵是根據題意所述的旋轉三要素畫出圖形,然后結合直角坐標系解答.5、D【解析】【分析】根據軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既是軸對稱圖形,又是中心對稱圖形,故本選項不符合題意;C.既不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項符合題意.故選:D.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、A【解析】【分析】當GB=GC時,點G在BC的垂直平分線上,分兩種情況討論,依據∠DAG=60°,即可得到旋轉角α的度數(shù).【詳解】如圖,當GB=GC時,點G在BC的垂直平分線上,分兩種情況討論:①當點G在AD右側時,取BC的中點H,連接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四邊形ABHM是矩形,∴AM=BH=,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等邊三角形,∴∠DAG=60°,∴旋轉角α=60°;②當點G在AD左側時,同理可得△ADG是等邊三角形,∴∠DAG=60°,∴旋轉角α=360°-60°=300°,故選:A.【考點】本題主要考查了旋轉的性質,全等三角形的判定與性質的運用,解題時注意:對應點與旋轉中心所連線段的夾角等于旋轉角.7、C【解析】【分析】根據旋轉的性質,對每個選項逐一判斷即可.【詳解】解:∵將△ABM繞點A逆時針旋轉得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故選項A不符合題意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB與CN不一定平行,故選項B不符合題意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且頂角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故選項C符合題意;∵AM=AN,而AC不一定平分∠MAN,∴AC與MN不一定垂直,故選項D不符合題意;故選:C.【考點】本題考查了旋轉的性質,等腰三角形的判定與性質.旋轉變換是全等變換,利用旋轉不變性是解題的關鍵.8、D【解析】【分析】根據六邊形ABCDEF的內角都相等,∠DAB=60°,平行線的判定,平行四邊形的判定,中心對稱圖形的定義一一判斷即可.【詳解】∵六邊形ABCDEF的內角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°.∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正確,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正確.∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四邊形EFAD,四邊形BCDA是等腰梯形,∴AF=DE,AB=CD.∵AB=DE,∴AF=CD,故③正確,連接CF與AD交于點O,連接DF、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四邊形ACDF是平行四邊形,故④正確,同法可證四邊形AEDB是平行四邊形,∴AD與CF,AD與BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六邊形ABCDEF是中心對稱圖形,且是軸對稱,故⑤正確.故選D.【考點】本題考查了平行四邊形的判定和性質、平行線的判定和性質、軸對稱圖形、中心對稱圖形等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.9、B【解析】【分析】根據平行四邊形的性質及旋轉的性質可知,然后可得,則有,進而問題可求解.【詳解】解:∵四邊形是平行四邊形,,∴,由旋轉的性質可得,∴,∴;故選B.【考點】本題主要考查平行四邊形的性質與旋轉的性質,熟練掌握平行四邊形的性質與旋轉的性質是解題的關鍵.10、C【解析】【分析】利用旋轉性質可得△ABF≌△ACD,根據全等三角形的性質一一判斷即可.【詳解】解:∵△ADC繞A順時針旋轉90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無法判斷BE=CD,故①錯誤,故選:C.【考點】本題考查了旋轉的性質:旋轉前后兩圖形全等,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.二、填空題1、【解析】【分析】根據原點對稱的點的特征求解即可;【詳解】點與點關于原點對稱,,,故.故答案為:.【考點】本題主要考查了關于原點對稱的點的坐標,準確計算是解題的關鍵.2、y=-0.5x+5【解析】【分析】直接把點A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點B,可得出OB,AB的長,再由△ABO繞點A逆時針旋轉90°得到△ADC,由旋轉不變性的性質可知DC=OB,AD=AB,故可得出C點坐標,再把C點和A點坐標代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經過點A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點B,∴OB=2,AB=4,∵△ABO繞點A逆時針旋轉90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【考點】本題考查的是一次函數(shù)圖象上點的坐標特點及圖形旋轉的性質,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.3、四【解析】【分析】畫出圖形,利用圖象解決問題即可.【詳解】解:如圖,所以在第四象限,故答案為:四.【考點】本題考查坐標與圖形變化—旋轉,解題的關鍵是正確畫出圖形,屬于中考??碱}型.4、①②④【解析】【分析】過E作EM⊥BC,EN⊥CD,可證△BEM≌△FEN得BE=EF,故①正確;可證四邊形BEFG是正方形得∠EBG=90°,BE=BG,可證∠ABE=∠CBG,進而得到△ABE≌△CBG,所以∠BAE=∠BCG,得∠BCA+∠BCG=90°,即∠ACG=90°,可證②正確;由可求BE=,過E作EH⊥AB,則∠AEH=180°-∠BAC-∠AHE=45°,知AH=HE,設AH=HE=x,則BH=4-x,由,得到AH=HE=2,從而得到,知③錯誤;由②可知,△ABE≌△CBG,所以AE=CG,而CG+CE=AE+CE=AC可求,④正確.【詳解】解:過E作EM⊥BC,EN⊥CD∵四邊形ABCD是正方形,AC平分∠BCD∴EM=EN∵∠EMC=∠MCN=∠ENC=90°∴∠MEN=90°∵EF⊥BE∴∠BEM+∠MEF=∠FEN+∠MEF=90°∴∠BEM=∠FEN∵∠EMB=∠ENF=90°,EM=EN∴△BEM≌△FEN∴BE=EF故①正確;∵∠BEF=∠EFG=90°,EF=FG,BE=EF∴BE=FG,BE∥FG∴四邊形BEFG是平行四邊形∵∠BEF=90°,BE=EF∴四邊形BEFG是正方形∴∠EBG=90°,BE=BG∵∠ABC=90°∴∠ABE+∠EBC=∠EBC+∠CBG=90°∴∠ABE=∠CBG又∵AB=BC,BE=BG∴△ABE≌△CBG∴∠BAE=∠BCG∵∠BAE+∠BCA=90°∴∠BCA+∠BCG=90°,即∠ACG=90°故②正確;∵∴∴BE=過E作EH⊥AB∵四邊形ABCD是正方形∴∠BAC=45°∵∠AHE=90°∴∠AEH=180°-∠BAC-∠AHE=45°∴AH=HE設AH=HE=x,則BH=4-x∵∴解得∴AH=HE=2∴故③錯誤;由②可知,△ABE≌△CBG∴AE=CG∴CG+CE=AE+CE=AC∵∠ACB=45°∴AC=∴CG+CE=故④正確,所以答案為:①②④.【考點】本題是正方形綜合題,主要考查了旋轉的性質,正方形的判定與性質,角平分線的性質,勾股定理,全等三角形的判定與性質,熟練掌握全等三角形的判定與性質,綜合運用正方形的判定與性質定理,勾股定理等知識是解題的關鍵.5、【解析】【分析】由題意分析可知,點F為主動點,運動軌跡是線段AB,G為從動點,所以以點E為旋轉中心構造全等關系,得到點G的運動軌跡,也是一條線段,之后通過垂線段最短構造直角三角形獲得CG最小值.【詳解】解:由題意可知,點F是主動點,點G是從動點,點F在線段AB上運動,點G的軌跡也是一條線段,將△EFB繞點E旋轉60°,使EF與EG重合,得到△EFB≌△EGH,從而可知△EBH為等邊三角形,∵四邊形ABCD是正方形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴點G在垂直于HE的直線HN上,延長HG交DC于點N,過點C作CM⊥HN于M,則CM即為CG的最小值,過點E作EP⊥CM于P,可知四邊形HEPM為矩形,∠PEC=30°,∠EPC=90°,則CM=MP+CP=HE+EC=2+=,故答案為:.【考點】本題考查了線段最值問題,分清主動點和從動點,通過旋轉構造全等,從而判斷出點G的運動軌跡,是本題的關鍵,之后運用垂線段最短,構造圖形計算,是最值問題中比較典型的類型.6、【解析】【分析】根據旋轉角相等可得,進而勾股定理求解即可【詳解】解:四邊形是正方形將繞點B順時針方向旋轉,能與重合,,故答案為:【考點】本題考查了旋轉的性質,勾股定理,求得旋轉角相等且等于90°是解題的關鍵.7、或##或【解析】【分析】連接,根據題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉的性質,勾股定理,直角三角形斜邊上中線的性質,確定點的位置是解題的關鍵.8、【解析】【分析】根據題意,畫出旋轉后圖形,即可求解【詳解】解:如圖,將繞點逆時針旋轉180°,所以點的對應點為M的坐標為.故答案為:【考點】本題考查平面直角坐標系內圖形的對稱,旋轉,解題關鍵是理解對稱旋轉的含義,并結合網格解題.9、【解析】【分析】根據正六邊形的特點,每6次翻轉為一個循環(huán)組,用2022除以6的結果判斷出點B的位置,求出前進的距離.【詳解】解:∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,∴每6次翻轉為一個循環(huán)組循環(huán),∵,∴經過2022次翻轉完成第337循環(huán)組,點B在開始時點B的位置,∵,∴,∴翻轉前進的距離=2×2022=4044,所以,點B的坐標為,故答案為:.【考點】本題考查點的坐標,涉及坐標與圖形變化-旋轉,正六邊形的性質,確定出翻轉最后點B所在的位置是關鍵.10、-1【解析】【分析】平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),可據此求出m、n的值.【詳解】∵點與點關于坐標系原點對稱,∴m-2n=-4,3m=-6解得:m=-2,n=1.故m+n=-2+1=-1.故答案為-1.【考點】本題考查了關于原點對稱的點坐標的關系,是需要識記的基本問題.三、解答題1、(1)①證明見詳解;②BG=4(2)線段PD的最小值為2+2【解析】【分析】(1)①由旋轉的性質可得∠ACD=90°=∠BCE,AB=DE,BC=CE,AC=CD,∠ABC=∠DEC=135°,由等腰三角形的性質可得∠BEC=45°=∠CBE,可證∠BEC+∠CED=180°,可得結論;②通過證明四邊形ABDG是矩形,可得AD=BG,由等腰直角三角形的性質可求解;(2)由垂線段最短可得當PD⊥AB時,PD的長度有最小值,先證點P,點E,點D三點共線,由勾股定理可求DE的長,由正方形的性質可得BC=PE=2,即可求解.(1)①證明:如圖,連接AG,∵將△ABC繞點C順時針旋轉90°得到△DEC,∴△ABC≌△DEC,∠ACD=90°=∠BCE,∴AB=DE,BC=CE,AC=CD,∠ABC=∠DEC=135°∴∠BEC=45°=∠CBE,∴∠BEC+∠CED=180°∴B、E、D三點共線;②∵將線段DE繞點D順時針旋轉90°得到DG∴DE=DG,∠EDG=90°∴AB=DE=DG,∵∠ABE=∠ABC-∠CBE=90°,∴∠ABE+∠EDG=180°,∴AB//DG,∴四邊形ABDG是平行四邊形,又∵∠BDG=90°∴四邊形ABDG是矩形,∴AD=BG,∵AC=CD=4,∠ACD=90°,∴AD=AC=4,BG=4;(2)如圖:∵點P在邊AB上,∴當PD⊥AB時,PD的長度有最小值由旋轉的性質可得:∠ABC=∠CED=∠BCE=90°,∴BC//DE,∵∠ABC+∠BPD=180°,∴DP//BC,∴點P,點E,點D三點共線,∵AC=2CE,∴BC=CE=2,又∵∠ABC=∠BPE=∠BCE=90°,∴四邊形BPEC是正方形,∴BC=PE=2,∵CD=AC=4,CE=2,∠CED=90°,∴DE=∴DP=2+2,∴線段PD的最小值為2+2.【考點】本題是幾何變換綜合題,考查了旋轉的性質,全等三角形的性質,等腰三角形的性質,矩形的判定和性質,勾股定理等知識,靈活運用這些性質解決問題是解題的關鍵.2、(1)圖見解析;;(2)圖見解析;【解析】【分析】(1)畫出關于原點對稱的,寫出的坐標即可;(2)畫出繞點順時針旋轉后得到的,寫出點的坐標即可.【詳解】解:(1)如圖即為所作,;(2)如圖:即為所作,.【考點】本題考查了旋轉作圖,根據題意畫出圖形是解本題的關鍵.3、(1)正方形,3(2)S四邊形ABCD=【解析】【分析】(1)由旋轉的性質得,證明四邊形ADEF是菱形,設正方形BCMN的中心為點O,連接OA、OD、OF,根據旋轉的性質得到,,可得出,則,根據正方形的判定條件得到ADEF是正方形,根據求解即可;(2)以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,根據S四邊形ABCD=(S△BCM-S△ADE)計算即可;(1)如圖,設正方形BCMN的中心為點O,連接OA、OD、OF,∵以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,∴,,,∴四邊形ADEF是菱形,,∴,∴菱形ADEF是正方形,∴;故答案是:正方形;3;(2)解:如圖,以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,∴△ADE是等邊三角形,∴S四邊形ABCD=(S△BCM-S△ADE),∵AD=6,BC=12,∴易得△BCM和△ADE的高分別為6和3.∴S△BCM=×12×6=36,S△ADE=×6×3=9.∴S四邊形ABCD=×(36-9)=9.【考點】本題主要考查了正方形的判定和性質,等邊三角形的判定與性質,旋轉的性質,準確計算是解題的關鍵.4、(1)①見解析;②見解析;③(2)【解析】【分析】(1)①根據旋轉的性質得到,求得,根據平行線的性質得到,于是得到結論;②如圖1,過點作的垂線,根據角平分線的性質得到,求得,根據全等三角形的性質得到,根據三角形的中位線定理即可得到結論;③如圖2,過點作的垂線,解直角三角形即可得到結論.(2)如圖3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論