2025-2026學(xué)年度人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】重點解析試卷(詳解版)_第1頁
2025-2026學(xué)年度人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】重點解析試卷(詳解版)_第2頁
2025-2026學(xué)年度人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】重點解析試卷(詳解版)_第3頁
2025-2026學(xué)年度人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】重點解析試卷(詳解版)_第4頁
2025-2026學(xué)年度人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】重點解析試卷(詳解版)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形2、如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2019次,點B的落點依次為B1,B2,B3,…,則B2019的坐標為(

)A.(1010,0) B.(1310.5,) C.(1345,) D.(1346,0)3、如圖,已知正方形的邊長為3,點E是邊上一動點,連接,將繞點E順時針旋轉(zhuǎn)到,連接,則當(dāng)之和取最小值時,的周長為(

)A. B. C. D.4、已知點P坐標為,將線段OP繞原點O逆時針旋轉(zhuǎn)90°得到線段,則點P的對應(yīng)點的坐標為(

)A. B. C. D.5、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6、下列幾何圖形中,是軸對稱圖形但不是中心對稱圖形的是(

)A.梯形 B.等邊三角形 C.平行四邊形 D.矩形7、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.8、在下列面點烘焙模具中,其圖案是中心對稱圖形的是(

)A. B.C. D.9、二次函數(shù)的圖象的頂點坐標是,且圖象與軸交于點.將二次函數(shù)的圖象以原點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)180°,則旋轉(zhuǎn)后得到的函數(shù)解析式為(

)A. B.C. D.10、如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A'B'C,連接AA',若∠1=25°,則∠BAA'的度數(shù)是(

)A.70° B.65° C.60° D.55°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在坐標系中放置一菱形,已知,點B在y軸上,,先將菱形沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)12次,點B的落點依次為,,,,則的橫坐標為______.2、如圖,將一個頂角為30°角的等腰△ABC繞點A順時針旋轉(zhuǎn)一個角度α(0<α<180°)得到△AB'C′,使得點B′、A、C在同一條直線上,則α等于_____°.3、如圖,在△ABC中,∠BAC=90°,AB=AC=10cm,點D為△ABC內(nèi)一點,∠BAD=15°,AD=6cm,連接BD,將△ABD繞點A逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應(yīng)點E,連接DE,DE交AC于點F,則CF的長為________cm.4、如圖所示,五角星的頂點是一個正五邊形的五個頂點,這個五角星繞中心至少旋轉(zhuǎn)__________度能和自身重合.5、將正方形OEFG放在平面直角坐標系中,O是坐標原點,若點E的坐標為,則點G的坐標為_____.6、將點繞原點O順時針旋轉(zhuǎn)得到點,則點落在第____________象限.7、如圖,矩形ABCD中,AB=3,BC=4,以點A為中心,將矩形ABCD旋轉(zhuǎn)得到矩形AB'C'D',使得點B'落在邊AD上,則∠C'AC的度數(shù)為_____°.8、兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=13,CD=7.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)a(0α90°),如圖2所示.當(dāng)BD與CD在同一直線上(如圖3)時,則△ABC的面積為____.9、在4×4的方格中有五個同樣大小的正方形如圖擺放,移動其中一個正方形到空白方格中,與其余四個正方形組成的新圖形是一個軸對稱圖形,這樣的移法共有__種.10、點A(1,-5)關(guān)于原點的對稱點為點B,則點B的坐標為______.三、解答題(6小題,每小題5分,共計30分)1、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點,將點O沿BC翻折得到點,將ABC繞點順時針旋轉(zhuǎn),使點B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點M為BE的中點,連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請直接寫出的值為.2、明遇到這樣一個問題:如圖①,在四邊形ABCD中,∠B=40°,∠C=50°,AB=CD,AD=2,BC=4,求四邊形ABCD的面積.(1)經(jīng)過思考小明想到如下方法:以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉(zhuǎn)90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,則四邊形ADEF是________.(填一種特殊的平行四邊形)∴S四邊形ABCD=________.(2)解決問題:如圖③,在四邊形ABCD中,∠BAD=140°,∠CDA=160°,AB=CD,AD=6,BC=12,則四邊形ABCD的面積為多少?3、如圖,在10×8的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.(1)先將△ABC向下平移4個單位,得到△A′B′C′;(2)再將△A′B′C′繞點B′逆時針旋轉(zhuǎn)90°,得到△A′'B′C′'.畫出△A′B′C′和△A″B′C″.(用黑色水筆描粗各邊并標出字母,不要求寫畫法)4、如圖,在的方格紙中,已知格點P,請按要求畫格點圖形(頂點均在格點上).(1)在圖1中畫一個銳角三角形,使P為其中一邊的中點,再畫出該三角形向右平移2個單位后的圖形.(2)在圖2中畫一個以P為一個頂點的鈍角三角形,使三邊長都不相等,再畫出該三角形繞點P旋轉(zhuǎn)后的圖形.5、如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE,CF相交于點D,(1)求證:BE=CF;(2)當(dāng)四邊形ACDE為菱形時,求BD的長.6、如圖,點E為正方形外一點,,將繞A點逆時針方向旋轉(zhuǎn)得到的延長線交于H點.(1)試判定四邊形的形狀,并說明理由;(2)已知,求的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、D【解析】【分析】連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4.由于2019=336×6+3,因此點向右平移(即)即可到達點,根據(jù)點的坐標就可求出點的坐標.【詳解】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4.∵2019=336×6+3,∴點B3向右平移1344(即336×4)到點B2019.∵B3的坐標為(2,0),∴B2019的坐標為(1346,0),故選:D【考點】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識,考查了操作、探究、發(fā)現(xiàn)規(guī)律的能力.發(fā)現(xiàn)“每翻轉(zhuǎn)6次,圖形向右平移4”是解決本題的關(guān)鍵.3、A【解析】【分析】連接BF,過點F作FG⊥AB交AB延長線于點G,通過證明△AED≌△GFE(AAS),確定F點在BF的射線上運動;作點C關(guān)于BF的對稱點C',由三角形全等得到∠CBF=45°,從而確定C'點在AB的延長線上;當(dāng)D、F、C'三點共線時,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=3即可.【詳解】解:連接BF,過點F作FG⊥AB交AB延長線于點G,∵將ED繞點E順時針旋轉(zhuǎn)90°到EF,∴EF⊥DE,且EF=DE,∴△AED≌△GFE(AAS),∴FG=AE,∴F點在BF的射線上運動,作點C關(guān)于BF的對稱點C',∵EG=DA,F(xiàn)G=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC′的角平分線,即F點在∠CBC′的角平分線上運動,∴C'點在AB的延長線上,當(dāng)D、F、C'三點共線時,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∴DC'=3,∴DF+CF的最小值為3,∴此時的周長為.故選:A.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),軸對稱求最短路徑;能夠?qū)⒕€段的和通過軸對稱轉(zhuǎn)化為共線線段是解題的關(guān)鍵.4、B【解析】【分析】如圖,作軸于,軸于,證明,有,,進而可得點坐標.【詳解】解:如圖,作軸于,軸于,∵,∴在和中∵∴∴,∴故選B.【考點】本題考查了繞原點旋轉(zhuǎn)90°的點坐標,三角形全等的判定與性質(zhì).解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).5、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既不是軸對稱圖形,又不是中心對稱圖形,故本選項不符合題意;C.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.故選:C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.6、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義以及性質(zhì)對各項進行分析即可.【詳解】A、梯形不是軸對稱圖形,也不是中心對稱圖形,故本選項說法錯誤;B、等邊三角形是軸對稱圖形,但不是中心對稱圖形,故本選項說法正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項說法錯誤;D、矩形是軸對稱圖形,也是中心對稱圖形,故本選項說法錯誤.故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形的判斷,掌握軸對稱圖形和中心對稱圖形的定義以及性質(zhì)是解題的關(guān)鍵.7、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷即可.【詳解】解:A、是中心對稱圖形,但不是軸對稱圖形,不符合題意;B、是軸對稱圖像,但不是中心對稱圖形,不符合題意;C、是軸對稱圖形,但不是中心對稱圖形,不符合題意;D、是軸對稱圖形,也是中心對稱圖形,符合題意;故選:D【考點】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合,掌握以上知識是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)中心對稱圖形的性質(zhì)得出圖形旋轉(zhuǎn)180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.【詳解】解:A.不是中心對稱圖形,不符合題意;B.不是中心對稱圖形,不符合題意;C.不是中心對稱圖形,不符合題意;D.是中心對稱圖形,符合題意;故選:D.【考點】此題主要考查了中心對稱圖形的性質(zhì),根據(jù)中心對稱圖形的定義判斷圖形是解決問題的關(guān)鍵.9、C【解析】【分析】設(shè)將二次函數(shù)的圖象以原點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)180°后為:;根據(jù)旋轉(zhuǎn)的性質(zhì),得的圖象的頂點坐標是,且圖象與軸交于點,得,再通過列方程并求解,即可得到表達式并轉(zhuǎn)換為頂點式,即可得到答案.【詳解】設(shè)將二次函數(shù)的圖象以原點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)180°后為:∵二次函數(shù)的圖象的頂點坐標是,且圖象與軸交于點∴的圖象的頂點坐標是,且圖象與軸交于點∴∴,∴,∴∴∴∴故選:C.【考點】本題考查了二次函數(shù)、旋轉(zhuǎn)的知識;解題的關(guān)鍵是熟練掌握二次函數(shù)圖像及解析式、旋轉(zhuǎn)的性質(zhì),從而完成求解.10、B【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的內(nèi)角和定理可得結(jié)果.【詳解】∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°-70°-45°=65°,故選:B.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.二、填空題1、【解析】【分析】連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4,由于,因此點B向右平移8即可到達點,根據(jù)點B的坐標就可求出點的坐標.【詳解】連接AC,如圖所示,∵四邊形OABC是菱形,∴,∵,∴是等邊三角形,∴,∴,∵,∴,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示,由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4,∵,∴點B向右平移2×4=8個單位到點,∵B點的坐標為,∴的坐標為,故答案為:.【考點】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識,考查了操作、探究、發(fā)現(xiàn)規(guī)律的能力.發(fā)現(xiàn)“每翻轉(zhuǎn)6次,圖形向右平移4”是解決本題的關(guān)鍵.2、105°【解析】【分析】由等腰三角形的性質(zhì)可求∠BAC=∠BCA=75°,由旋轉(zhuǎn)的性質(zhì)可求解.【詳解】解:∵∠B=30°,BC=AB,∴∠BAC=∠BCA=75°,∴∠BAB'=105°,∵將一個頂角為30°角的等腰△ABC繞點A順時針旋轉(zhuǎn)一個角度α(0<α<180°)得到△AB'C′,∴∠BAB'=α=105°,故答案為:105.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),靈活運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.3、【解析】【分析】過點A作AH⊥DE,垂足為H,由旋轉(zhuǎn)的性質(zhì)可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根據(jù)等腰直角三角形的性質(zhì)可得∠HAE=45°,AH=3,進而得∠HAF=30°,繼而求出AF長即可求得答案.【詳解】過點A作AH⊥DE,垂足為H,∵∠BAC=90°,AB=AC,將△ABD繞點A逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應(yīng)點E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案為.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,解直角三角形等知識,正確添加輔助線構(gòu)建直角三角形、靈活運用相關(guān)知識是解題的關(guān)鍵.4、72【解析】【分析】根據(jù)題意,五角星的五個角全等,根據(jù)圖形間的關(guān)系可得答案.【詳解】根據(jù)題意,五角星的頂點是一個正五邊形的五個頂點,這個五角星可以由一個基本圖形(圖中的陰影部分)繞中心O至少經(jīng)過4次旋轉(zhuǎn)而得到,每次旋轉(zhuǎn)的度數(shù)為360°除以5,為72度.故答案為:72【考點】此題主要考查了旋轉(zhuǎn)對稱圖形,圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等.5、或【解析】【分析】先利用正方形的性質(zhì),利用旋轉(zhuǎn)畫出正方形OEFG,從而得到G點的坐標.【詳解】把EO繞E點順時針(或逆時針)旋轉(zhuǎn)90°得到對應(yīng)點為G(或G′),如圖,則G點的坐標為(2,-3)或G′的坐標為(﹣2,3),【考點】本題考查坐標與圖形的變換,涉及旋轉(zhuǎn)、正方形的性質(zhì)等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.6、四【解析】【分析】畫出圖形,利用圖象解決問題即可.【詳解】解:如圖,所以在第四象限,故答案為:四.【考點】本題考查坐標與圖形變化—旋轉(zhuǎn),解題的關(guān)鍵是正確畫出圖形,屬于中考??碱}型.7、90【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得,利用全等三角形的性質(zhì)可得,結(jié)合圖形及矩形的性質(zhì)可得,即可得出結(jié)果.【詳解】解:∵將矩形ABCD旋轉(zhuǎn)得到矩形,∴,∴,∵,∴,即,故答案為:90.【考點】題目主要考查矩形的基本性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)等,理解題意,結(jié)合圖形,綜合運用這些知識點是解題關(guān)鍵.8、30【解析】【分析】設(shè)AO與BC的交點為點G,根據(jù)等腰直角三角形的性質(zhì)證△AOC≌△BOD,進而得出△ABC是直角三角形,設(shè)AC=x,BC=x+7,由勾股定理求出x,再計算△ABC的面積即可.【詳解】解:設(shè)AO與BC的交點為點G,∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠OGB=90°,∵∠OGB=∠AGC,∴∠CAO+∠AGC=90°,∴∠ACG=90°,∴CG⊥AC,設(shè)AC=x,則BD=AC=x,BC=x+7,∵BD、CD在同一直線上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S=,故答案為:30.【考點】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形,利用全等三角形的性質(zhì)解決問題.9、13【解析】【分析】根據(jù)軸對稱圖形的性質(zhì),分別移動一個正方形,即可得出符合要求的答案.【詳解】如圖所示:故一共有13畫法.10、(-1,5)【解析】【分析】根據(jù)若兩點關(guān)于坐標原點對稱,橫縱坐標均互為相反數(shù),即可求解.【詳解】解:∵點A(1,-5)關(guān)于原點的對稱點為點B,∴點B的坐標為(-1,5).故答案為:(-1,5)【考點】本題主要考查了平面直角坐標系內(nèi)點關(guān)于原點對稱的特征,熟練掌握若兩點關(guān)于坐標原點對稱,橫縱坐標均互為相反數(shù)是解題的關(guān)鍵.三、解答題1、(1);(2)①;②;(3)【解析】【分析】(1)連接OB,,,由,O為BC的中點,得到,則,,再由旋轉(zhuǎn)的性質(zhì)可得,,由此求解即可;(2)①連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,則,可以得到,再由可以得到,由此即可求解;②連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,然后證明,,得到,則,再證明△OBM≌△NEM得到,,從而推出MN為△BFE的中位線,得到,則;(3)連接與BF交于H,由,,可得,,由含30度角的直角三角形的性質(zhì)可以得到,,再由勾股定理可以得到,由此即可得到答案.【詳解】解:(1)如圖所示,連接OB,,,∵,O為BC的中點,∴,∴,∴,∵將點O沿BC翻折得到點,∴,由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴旋轉(zhuǎn)角為,故答案為:;(2)①如圖所示,連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴,∵,∴,故答案為:;②如圖所示,連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M為BE的中點,∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N為EF的中點,∴MN為△BFE的中位線,∴,∴;(3)如圖所示,連接與BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案為:.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,三角形中位線定理,含30度角的直角三角形的性質(zhì),勾股定理,平行線的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握旋轉(zhuǎn)的性質(zhì).2、(1)正方形,3(2)S四邊形ABCD=【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得,證明四邊形ADEF是菱形,設(shè)正方形BCMN的中心為點O,連接OA、OD、OF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到,,可得出,則,根據(jù)正方形的判定條件得到ADEF是正方形,根據(jù)求解即可;(2)以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉(zhuǎn)120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,根據(jù)S四邊形ABCD=(S△BCM-S△ADE)計算即可;(1)如圖,設(shè)正方形BCMN的中心為點O,連接OA、OD、OF,∵以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉(zhuǎn)90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,∴,,,∴四邊形ADEF是菱形,,∴,∴菱形ADEF是正方形,∴;故答案是:正方形;3;(2)解:如圖,以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉(zhuǎn)120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,∴△ADE是等邊三角形,∴S四邊形ABCD=(S△BCM-S△ADE),∵AD=6,BC=12,∴易得△BCM和△ADE的高分別為6和3.∴S△BCM=×12×6=36,S△ADE=×6×3=9.∴S四邊形ABCD=×(36-9)=9.【考點】本題主要考查了正方形的判定和性質(zhì),等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),準確計算是解題的關(guān)鍵.3、(1)見解析;(2)見解析【解析】【分析】(1)利用網(wǎng)格特點和平移的性質(zhì)畫出A、B、C的對應(yīng)點A′、B′、C′即可;(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A′、C′的對應(yīng)點A″、C″即可.【詳解】解:(1)如圖,△為所作;(2)如圖,△為所作..【考點】本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點,順次連接得出旋轉(zhuǎn)后的圖形.也考查了平移變換.4、(1)見解析(2)見解析【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論