下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計案例:函數(shù)的單調(diào)性一、基本信息項目內(nèi)容課題函數(shù)的單調(diào)性(人教版A版必修第一冊)課型新授課課時安排1課時(45分鐘)授課對象高一學(xué)生核心素養(yǎng)目標(biāo)數(shù)學(xué)抽象、邏輯推理、直觀想象、數(shù)學(xué)運算二、教學(xué)目標(biāo)(一)知識與技能理解函數(shù)單調(diào)性的直觀含義,能通過函數(shù)圖像判斷簡單函數(shù)的單調(diào)區(qū)間;掌握函數(shù)單調(diào)性的定義,能運用定義證明簡單函數(shù)(如一次函數(shù)、二次函數(shù))的單調(diào)性;能利用單調(diào)性解決函數(shù)值比較、參數(shù)取值范圍等基礎(chǔ)問題。(二)過程與方法通過“圖像觀察—語言描述—符號定義”的遞進(jìn)式探究,體會從具體到抽象的數(shù)學(xué)思維過程;借助小組合作與實例分析,提升邏輯推理與數(shù)學(xué)表達(dá)能力。(三)情感態(tài)度與價值觀感受數(shù)學(xué)與生活的聯(lián)系(如氣溫變化、股價波動),激發(fā)學(xué)習(xí)興趣;培養(yǎng)嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維習(xí)慣,體會數(shù)形結(jié)合思想的應(yīng)用價值。三、教學(xué)重難點(一)教學(xué)重點函數(shù)單調(diào)性的直觀認(rèn)識與定義理解;運用定義證明函數(shù)單調(diào)性的步驟與方法。(二)教學(xué)難點從“直觀描述”到“符號定義”的抽象轉(zhuǎn)化(如何用數(shù)學(xué)語言刻畫“隨著x的增大,y增大/減小”);證明過程中代數(shù)變形(如因式分解、通分)的目標(biāo)性與嚴(yán)謹(jǐn)性。四、課前準(zhǔn)備教師準(zhǔn)備:多媒體課件(含氣溫變化圖、函數(shù)圖像動畫)、幾何畫板軟件、紙質(zhì)練習(xí)題;學(xué)生準(zhǔn)備:預(yù)習(xí)一次函數(shù)、二次函數(shù)圖像性質(zhì),準(zhǔn)備直尺、草稿本。五、教學(xué)方法教法:情境教學(xué)法、問題驅(qū)動法、演示法;學(xué)法:小組合作探究法、自主嘗試法、數(shù)形結(jié)合法。六、教學(xué)過程(一)情境引入:感知單調(diào)性的實際意義(5分鐘)生活情境呈現(xiàn):播放某市24小時氣溫變化折線圖,提問:“從凌晨到中午,氣溫呈現(xiàn)什么變化趨勢?從中午到深夜呢?”“這種‘上升’‘下降’的變化趨勢,在數(shù)學(xué)函數(shù)中如何體現(xiàn)?”數(shù)學(xué)問題銜接:展示函數(shù)y=x2、y=2x+1的圖像,引導(dǎo)學(xué)生觀察:“這兩個函數(shù)的圖像在不同區(qū)間內(nèi),y隨x的變化有什么不同特點?”引出課題:教師總結(jié)“上升”“下降”的共性特征,引出本節(jié)課核心——函數(shù)的單調(diào)性。(二)探究建構(gòu):從直觀到抽象的定義形成(15分鐘)1.直觀描述:建立單調(diào)性的初步認(rèn)知引導(dǎo)學(xué)生結(jié)合圖像用自然語言描述:對y=2x+1:“在整個定義域內(nèi),隨著x的增大,y始終增大”;對y=x2:“在x<0時,隨著x的增大,y減??;在x>0時,隨著x的增大,y增大”。教師板書“單調(diào)遞增”“單調(diào)遞減”“單調(diào)區(qū)間”的直觀描述,強調(diào)“區(qū)間”是單調(diào)性的前提。2.符號轉(zhuǎn)化:突破定義抽象難點問題鏈驅(qū)動:“如何用數(shù)學(xué)符號表示‘x增大’?”(引導(dǎo)學(xué)生說出“x?<x?”)“‘y增大’對應(yīng)什么符號關(guān)系?”(引導(dǎo)學(xué)生說出“f(x?)<f(x?)”)“對于y=x2在(0,+∞)上的遞增性,能否用符號語言描述?”定義生成:在學(xué)生嘗試表達(dá)的基礎(chǔ)上,教師規(guī)范給出單調(diào)性定義:設(shè)函數(shù)f(x)的定義域為I,區(qū)間D?I:若對任意x?,x?∈D,當(dāng)x?<x?時,都有f(x?)<f(x?),則稱f(x)在D上單調(diào)遞增,D為單調(diào)遞增區(qū)間;若對任意x?,x?∈D,當(dāng)x?<x?時,都有f(x?)>f(x?),則稱f(x)在D上單調(diào)遞減,D為單調(diào)遞減區(qū)間。關(guān)鍵詞解讀:強調(diào)“任意”“都有”的必要性(可舉例反證:若僅取兩個特定值,不能說明單調(diào)性)。3.定義辨析:深化理解出示辨析題:“若存在x?,x?∈[1,3],x?<x?,且f(x?)<f(x?),能否說明f(x)在[1,3]上單調(diào)遞增?”組織小組討論,教師點評總結(jié):“‘任意’是定義的核心,需排除特殊情況的偶然性?!保ㄈ?yīng)用深化:定義的實踐與遷移(18分鐘)1.例題1:圖像法判斷單調(diào)區(qū)間(基礎(chǔ)應(yīng)用)出示函數(shù)f(x)=|x|的圖像,提問:該函數(shù)的定義域是什么?分別指出其單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間。學(xué)生獨立完成后,教師強調(diào):“單調(diào)區(qū)間需用‘和’連接,不能用‘∪’(如f(x)=1/x的單調(diào)遞減區(qū)間是(-∞,0)和(0,+∞),而非(-∞,0)∪(0,+∞))?!?.例題2:定義法證明單調(diào)性(核心技能)求證:函數(shù)f(x)=x2在(0,+∞)上單調(diào)遞增。教師示范證明步驟(邊板書邊講解):取值:任取x?,x?∈(0,+∞),且x?<x?;作差:f(x?)-f(x?)=x?2-x?2=(x?-x?)(x?+x?);變形:因式分解,明確符號判斷的關(guān)鍵;定號:∵x?<x?,∴x?-x?<0;∵x?,x?>0,∴x?+x?>0;故f(x?)-f(x?)<0,即f(x?)<f(x?);結(jié)論:∴f(x)=x2在(0,+∞)上單調(diào)遞增。學(xué)生模仿練習(xí):求證f(x)=x2在(-∞,0)上單調(diào)遞減(指名板演,教師點評糾錯)。3.例題3:單調(diào)性的綜合應(yīng)用(能力提升)已知函數(shù)f(x)=2x+1在區(qū)間[a,b]上單調(diào)遞增,且f(a)=3,f(b)=7,求a,b的值。引導(dǎo)學(xué)生分析:“由單調(diào)性可知,f(a)是最小值,f(b)是最大值,代入解析式求解即可。”(四)課堂小結(jié)與作業(yè)布置(7分鐘)1.小結(jié)(師生共同梳理)知識層面:單調(diào)性的直觀含義、符號定義、判斷與證明方法;思想方法:數(shù)形結(jié)合、從具體到抽象、分類討論;核心素養(yǎng):數(shù)學(xué)抽象(定義生成)、邏輯推理(證明過程)、直觀想象(圖像應(yīng)用)。2.分層作業(yè)基礎(chǔ)作業(yè):教材習(xí)題,用定義證明f(x)=3x-2在R上單調(diào)遞增;拓展作業(yè):探究函數(shù)f(x)=x+1/x的單調(diào)區(qū)間(提示:結(jié)合圖像或定義分析);實踐作業(yè):記錄家里一周內(nèi)的用電量變化,用函數(shù)單調(diào)性描述變化趨勢。七、板書設(shè)計函數(shù)的單調(diào)性一、直觀認(rèn)識二、符號定義三、應(yīng)用舉例1.遞增:y隨x增大而增大1.遞增:?x?<x?∈D,f(x?)<f(x?)1.圖像判斷:f(x)=|x|2.遞減:y隨x增大而減小2.遞減:?x?<x?∈D,f(x?)>f(x?)2.定義證明:f(x)=x2(示范)3.單調(diào)區(qū)間3.關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國疾病預(yù)防控制中心艾防中心公開招聘參比實驗室科研助理備考題庫及答案詳解一套
- 2025年安徽演藝集團(tuán)有限責(zé)任公司社會公開招聘和校園招聘備考題庫及完整答案詳解一套
- 2025年招聘事業(yè)發(fā)展部工作人員備考題庫完整答案詳解
- 長春光華學(xué)院2025-2026學(xué)年第一學(xué)期招聘34人備考題庫及完整答案詳解1套
- 2025年淮北市交通投資控股集團(tuán)有限公司及下屬子公司面向社會招聘工作人員備考題庫參考答案詳解
- 2025年榆林市第五幼兒園招聘備考題庫含答案詳解
- 泉州高二會考試卷及答案
- 桃源六校聯(lián)考試卷及答案
- 知識產(chǎn)權(quán)戰(zhàn)略推進(jìn)專項項目合同書
- 3-Amino-5-hydroxybenzoic-acid-13C-生命科學(xué)試劑-MCE
- 招標(biāo)代理機構(gòu)選取技術(shù)標(biāo)投標(biāo)方案(技術(shù)方案)
- 七年級道德與法治上冊第三次月考試卷(卷二)(含答案)
- 西師版新編五上數(shù)學(xué)總復(fù)習(xí)教案
- 新生兒肺臟超聲
- MOOC 創(chuàng)業(yè)管理-江蘇大學(xué) 中國大學(xué)慕課答案
- 第十一章 突發(fā)公共衛(wèi)生法律制度
- 第三章掃描電子顯微鏡【完整版】PPT
- 整形外科診療指南
- 大干圍碼頭地塊概況
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)知到章節(jié)答案智慧樹2023年齊齊哈爾大學(xué)
- 小學(xué)四年級語文上冊期末復(fù)習(xí)教案教學(xué)設(shè)計
評論
0/150
提交評論