難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試試題(詳解版)_第1頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試試題(詳解版)_第2頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試試題(詳解版)_第3頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試試題(詳解版)_第4頁(yè)
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試試題(詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.52、如圖菱形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,若BD=8,AC=6,則AB的長(zhǎng)是()A.5 B.6 C.8 D.103、如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點(diǎn)H,點(diǎn)G為DE的中點(diǎn),連接GH,則GH的長(zhǎng)為()A. B. C.4.5 D.4.34、如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.55、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長(zhǎng)向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過(guò)點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長(zhǎng)方形AKJD的面積為S3,長(zhǎng)方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6、如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE7、平行四邊形中,,則的度數(shù)是()A. B. C. D.8、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點(diǎn)M,N分別為線段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長(zhǎng)度的最大值為()A. B. C. D.9、如圖,在菱形中,P是對(duì)角線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.10、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、正方形ABCD的邊長(zhǎng)是8cm,點(diǎn)M在BC邊上,且MC=2cm,P是正方形邊上的一個(gè)動(dòng)點(diǎn),連接PB交AM于點(diǎn)N,當(dāng)PB=AM時(shí),PN的長(zhǎng)是_____.2、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過(guò)點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕交CD邊于點(diǎn)E.若點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),則+PB的最小值_______.3、如圖,圓柱形容器高為0.8m,底面周長(zhǎng)為4.8m,在容器內(nèi)壁離底部0.1m的點(diǎn)處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)處,若容器壁厚忽略不計(jì),則壁虎捕捉蚊子的最短路程是______m.4、如圖,在中,,,,為上的兩個(gè)動(dòng)點(diǎn),且,則的最小值是________.5、如圖,在正方形ABCD中,AB=4,E為對(duì)角線AC上與A,C不重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號(hào)為__.6、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_______.7、如圖,在正方形ABCD中,,E是AB的中點(diǎn),P是AD上任意一點(diǎn),連接PE,PC,若是等腰三角形,則AP的長(zhǎng)可能是______.8、如圖,在長(zhǎng)方形ABCD中,.在DC上找一點(diǎn)E,沿直線AE把折疊,使D點(diǎn)恰好落在BC上,設(shè)這一點(diǎn)為F,若的面積是54,則的面積=______________.9、如圖,在?ABCD中,BC=3,CD=4,點(diǎn)E是CD邊上的中點(diǎn),將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點(diǎn)G到AB的距離為______.10、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在四邊形ABCD中,ABDC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長(zhǎng).2、如圖,在中,對(duì)角線AC、BD交于點(diǎn)O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長(zhǎng).

3、在長(zhǎng)方形紙片ABCD中,點(diǎn)E是邊CD上的一點(diǎn),將△AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處.

(1)如圖1,若點(diǎn)F落在對(duì)角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為________°.(2)如圖2,若點(diǎn)F落在邊BC上,且AB=CD=6,AD=BC=10,求CE的長(zhǎng).(3)如圖3,若點(diǎn)E是CD的中點(diǎn),AF的延長(zhǎng)線交BC于點(diǎn)G,且AB=CD=6,AD=BC=10,求CG的長(zhǎng).4、如圖,在平行四邊形中,E是上一點(diǎn).(1)用尺規(guī)完成以下基本操作:在下方作,使得,交于點(diǎn)F.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,已知,,求的度數(shù).5、如圖,在?ABCD中,對(duì)角線AC的垂直平分線EF交AD于點(diǎn)F,交BC于點(diǎn)E,交AC于點(diǎn)O.求證:四邊形AECF是菱形.(小海的證明過(guò)程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評(píng)析)小海利用對(duì)角線互相平分證明了四邊形AECF是平行四邊形,再利用對(duì)角線互相垂直證明它是菱形,可惜有一步錯(cuò)了.(挑錯(cuò)改錯(cuò))(1)請(qǐng)你幫小海找出錯(cuò)誤的原因;(2)請(qǐng)你根據(jù)小海的思路寫出此題正確的證明過(guò)程.

-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).2、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí);熟練掌握菱形對(duì)角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個(gè)角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進(jìn)一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長(zhǎng)即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點(diǎn)G為DE的中點(diǎn),∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.4、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長(zhǎng)是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過(guò)點(diǎn)B作BM⊥IA,交IA的延長(zhǎng)線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過(guò)點(diǎn)C作CN⊥DA交DA的延長(zhǎng)線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過(guò)點(diǎn)B作BM⊥IA,交IA的延長(zhǎng)線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過(guò)點(diǎn)C作CN⊥DA交DA的延長(zhǎng)線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對(duì)等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對(duì)邊互相平行,等角對(duì)等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)平行四邊形對(duì)角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).8、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時(shí),EF最大,因?yàn)镹與B重合時(shí)DN最大,此時(shí)根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過(guò)點(diǎn)D作DH⊥AB交AB于點(diǎn)H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時(shí),EF最大,∴N與B重合時(shí)DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點(diǎn)睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.9、A【解析】【分析】連接BP,通過(guò)菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過(guò)面積法得出等量關(guān)系.10、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.二、填空題1、5cm或5.2cm【解析】【分析】當(dāng)點(diǎn)P在BC上,AM>BP,當(dāng)點(diǎn)P在AB上,AM>BP,當(dāng)點(diǎn)P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當(dāng)點(diǎn)P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當(dāng)點(diǎn)P在BC上,AM>BP,當(dāng)點(diǎn)P在AB上,AM>BP,不合題意,舍去;當(dāng)點(diǎn)P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵M(jìn)C=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當(dāng)點(diǎn)P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長(zhǎng)為5cm或5.2cm.故答案為5cm或5.2cm.【點(diǎn)睛】本題考查正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想,掌握正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想是解題關(guān)鍵.2、【解析】【分析】不管P點(diǎn)在l上哪個(gè)位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當(dāng)D、P、D'共線時(shí)PD+PB最短.【詳解】過(guò)點(diǎn)D作DM⊥AB交BA的延長(zhǎng)線于點(diǎn)M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點(diǎn)D與點(diǎn)D′關(guān)于直線l對(duì)稱,連接BD交直線l于點(diǎn)P,此時(shí)PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點(diǎn)睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.3、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長(zhǎng)即為最短距離,然后分別求出AC,BC的長(zhǎng)度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長(zhǎng)即為最短距離,∵圓柱形容器高為0.8m,底面周長(zhǎng)為4.8m在容器內(nèi)壁離底部0.1m的點(diǎn)B處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)A處,∴,,,過(guò)點(diǎn)B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點(diǎn)睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長(zhǎng)即為所求.4、【解析】【分析】過(guò)點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,三點(diǎn)D、M、A′共線時(shí),最小為A′D的長(zhǎng),利用勾股定理求A′D的長(zhǎng)度即可解決問題.【詳解】解:過(guò)點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點(diǎn)D、M、A′共線時(shí),A′M+DM最小為A′D的長(zhǎng),∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識(shí),構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.5、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動(dòng)點(diǎn),當(dāng)DE⊥AC時(shí),根據(jù)垂線段最短可得此時(shí)DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長(zhǎng)DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動(dòng)點(diǎn),∴根據(jù)垂線段最短,當(dāng)DE⊥AC時(shí),DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯(cuò)誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.6、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.7、或或【解析】【分析】分三種情況:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),利用等腰三角形的性質(zhì)和正方形的性質(zhì)進(jìn)行求解即可.【詳解】解:如圖1,當(dāng)時(shí),∵四邊形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴則,∵E是AB的中點(diǎn),∴∴;如圖2.當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),∵四邊形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中點(diǎn),∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如圖3.當(dāng)時(shí),設(shè),則,在直角△PDC中,,在直角△AEP中,,則.解得,即.綜上所述,AP的長(zhǎng)可能是1或2或.故答案為:1或2或.【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,解題的關(guān)鍵在于能夠熟練掌握等腰三角形的性質(zhì)和正方形的性質(zhì).8、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質(zhì)可得AD=AF,然后求出CF,設(shè)DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設(shè)DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),矩形的性質(zhì),三角形的面積,勾股定理,熟記各性質(zhì)并利用勾股定理列出方程是解題的關(guān)鍵.9、2##【解析】【分析】根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長(zhǎng),進(jìn)而可得GF的值.【詳解】解:如圖,GF⊥AB于點(diǎn)F,∵點(diǎn)E是CD邊上的中點(diǎn),∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點(diǎn)F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點(diǎn)睛】本題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)、勾股定理等知識(shí),證明△ABG≌△EAD是解題的關(guān)鍵.10、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.三、解答題1、(1)見解析;(2)2【分析】(1)先判斷出∠OAB=∠DCA,進(jìn)而判斷出∠DAC=∠DCA,得出CD=AD=AB,即可得出結(jié)論;(2)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.【詳解】(1)證明:∵ABCD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵ABCD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴平行四邊形ABCD是菱形;(2)解:∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【點(diǎn)睛】此題主要考查特殊平行四邊形的判定與性質(zhì),解題的關(guān)鍵是菱形的判定與性質(zhì)、勾股定理的應(yīng)用.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質(zhì)求出AO,再利用勾股定理求出OB的長(zhǎng),故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8

∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四邊形ABCD是平行四邊形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【點(diǎn)睛】此題主要考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)及勾股定理的應(yīng)用.3、(1)18;(2)CE的長(zhǎng)為;(3)CG的長(zhǎng)為.【分析】(1)根據(jù)矩形的性質(zhì)得∠DAC=36°,根據(jù)折疊

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論