版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學上冊《圓》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在⊙O中按如下步驟作圖:(1)作⊙O的直徑AD;(2)以點D為圓心,DO長為半徑畫弧,交⊙O于B,C兩點;(3)連接DB,DC,AB,AC,BC.根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中錯誤的是()A.∠ABD=90° B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD2、如圖,是的直徑,弦于點,,,則的長為(
)A.4 B.5 C.8 D.163、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(
)A. B.1 C. D.4、在平面直角坐標系中,⊙O的半徑為2,點A(1,)與⊙O的位置關(guān)系是(
)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定5、如圖所示,一個半徑為r(r<1)的圖形紙片在邊長為10的正六邊形內(nèi)任意運動,則在該六邊形內(nèi),這個圓形紙片不能接觸到的部分面積是(
)A. B.C. D.6、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m7、已知一個三角形的三邊長分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.8、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能9、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(
)A.π B.π C.π D.210、如圖,在中,,cm,cm.是邊上的一個動點,連接,過點作于,連接,在點變化的過程中,線段的最小值是(
)A.1 B. C.2 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在⊙O中,是⊙O的直徑,,點是點關(guān)于的對稱點,是上的一動點,下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個數(shù)是_________.2、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.3、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.4、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.5、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.6、如圖,正方形ABCD的邊長為2a,E為BC邊的中點,的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點F,則E、F間的距離為.7、如圖,已知的半徑為2,內(nèi)接于,,則__________.8、一個扇形的圓心角是120°.它的半徑是3cm.則扇形的弧長為__________cm.9、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____10、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.三、解答題(5小題,每小題6分,共計30分)1、如圖,內(nèi)接于,,,則的直徑等于多少?2、如圖,AB、CD是⊙O中兩條互相垂直的弦,垂足為點E,且AE=CE,點F是BC的中點,延長FE交AD于點G,已知AE=1,BE=3,OE=.(1)求證:△AED≌△CEB;(2)求證:FG⊥AD;(3)若一條直線l到圓心O的距離d=,試判斷直線l是否是圓O的切線,并說明理由.3、如圖,已知直線交于A、B兩點,是的直徑,點C為上一點,且平分,過C作,垂足為D.(1)求證:是的切線;(2)若,的直徑為20,求的長度.4、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.5、如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點O,OC=1,以點O為圓心OC為半徑作半圓.(1)求證:AB為⊙O的切線;(2)如果tan∠CAO=,求cosB的值.-參考答案-一、單選題1、D【解析】【分析】根據(jù)作圖過程可知:AD是⊙O的直徑,=,根據(jù)垂徑定理即可判斷A、B、C正確,再根據(jù)DC=OD,可得AD=2CD,進而可判斷D選項.【詳解】解:根據(jù)作圖過程可知:AD是⊙O的直徑,∴∠ABD=90°,∴A選項正確;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B選項正確;根據(jù)垂徑定理,得AD⊥BC,∴C選項正確;∵DC=OD,∴AD=2CD,∴D選項錯誤.故選:D.【考點】本題考查作圖-復雜作圖、含30度角的直角三角形、垂徑定理、圓周角定理,解決本題的關(guān)鍵是熟練掌握相關(guān)知識點.2、C【解析】【分析】根據(jù)垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內(nèi)容并熟練地運用是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結(jié)合圓的周長公式進行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關(guān)知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關(guān)鍵.4、A【解析】【分析】根據(jù)點A的坐標,求出OA=2,根據(jù)點與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點A的坐標為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點A在⊙O上.故選:A.【考點】本題考查了點和圓的位置關(guān)系,點和圓的位置關(guān)系是由點到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當時,點在圓外;(2)當時,點在圓上;(3)當時,點在圓內(nèi).5、C【解析】【分析】當運動到正六邊形的角上時,圓與兩邊的切點分別為,,連接,,,根據(jù)正六邊形的性質(zhì)可知,故,再由銳角三角函數(shù)的定義用表示出的長,可知圓形紙片不能接觸到的部分的面積,由此可得出結(jié)論.【詳解】解:如圖所示,連接,,,此多邊形是正六邊形,,.,,,圓形紙片不能接觸到的部分的面積.故選:C.【考點】本題考查的是正多邊形和圓,熟知正六邊形的性質(zhì)是解答此題的關(guān)鍵.6、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點】本題考查了垂徑定理和勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.7、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點A作于D,利用勾股定理可求出AD的長,再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點為,則過點A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識點,讀懂題意,正確畫出圖形,并求出AD的長是解題關(guān)鍵.8、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.9、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以O(shè)C為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以O(shè)C為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關(guān)鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.10、A【解析】【分析】由∠AEC=90°知,點E在以AC為直徑的⊙M的上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點、可含點,最短時,即為連接與的交點(圖中點點),在中,,,則.,長度的最小值,故選:.【考點】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識點,難度偏大,解題時,注意輔助線的作法.二、填空題1、3【解析】【分析】①根據(jù)點是點關(guān)于的對稱點可知,進而可得;②根據(jù)一條弧所對的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對等角,可知只有當和重合時,,;④作點關(guān)于的對稱點,連接,DF,此時的值最短,等于的長,然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點是點關(guān)于的對稱點,,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當和重合時,,∴只有和重合時,,③錯誤;作關(guān)于的對稱點,連接,交于點,連接交于點,此時的值最短,等于的長.連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當點與點重合時,的值最小,最小值是10,∴④正確.故答案為:3.【考點】本題考查了圓的綜合知識,涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握圓的基本性質(zhì)并靈活運用是解題關(guān)鍵.2、8.【解析】【分析】連結(jié)OA,OB,點是的中點,半徑交弦于點,根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關(guān)鍵.3、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.4、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握圓周角的性質(zhì).5、.【解析】【分析】先利用勾股定理求出AB=10,進而求出CD=BD=5,再求出CF=4,進而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點D是AB中點,∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點】此題主要考查了直角三角形的性質(zhì),勾股定理,切線的性質(zhì),三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關(guān)鍵.6、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過兩個圓心的直線),垂直平分兩圓的公共弦.注意:在習題中常常通過公共弦在兩圓之間建立聯(lián)系.7、【解析】【詳解】分析:根據(jù)圓內(nèi)接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為2.點睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.8、2π【解析】【詳解】分析:根據(jù)弧長公式可得結(jié)論.詳解:根據(jù)題意,扇形的弧長為=2π,故答案為2π點睛:本題主要考查弧長的計算,熟練掌握弧長公式是解題的關(guān)鍵.9、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.10、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點為E,∵PA、PB分別是⊙O的切線,且切點為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.三、解答題1、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理,掌握這些知識點是解題關(guān)鍵.2、(1)見解析;(2)見解析;(3)直線l是圓O的切線,理由見解析【解析】【分析】(1)由圓周角定理得∠A=∠C,由ASA得出△AED≌△CEB;(2)由直角三角形斜邊上的中線性質(zhì)得EF=BC=BF,由等腰三角形的性質(zhì)得∠FEB=∠B,由圓周角定理和對頂角相等證出∠A+∠AEG=90°,進而得出結(jié)論;(3)作OH⊥AB于H,連接OB,由垂徑定理得出AH=BH=AB=2,則EH=AH?AE=1,由勾股定理求出OH=1,OB=,由一條直線l到圓心O的距離d=等于⊙O的半徑,即可得出結(jié)論.【詳解】(1)證明:由圓周角定理得:∠A=∠C,在△AED和△CEB中,,∴△AED≌△CEB(ASA);(2)證明:∵AB⊥CD,∴∠AED=∠CEB=90°,∴∠C+∠B=90°,∵點F是BC的中點,∴EF=BC=BF,∴∠FEB=∠B,∵∠A=∠C,∠AEG=∠FEB=∠B,∴∠A+∠AEG=∠C+∠B=90°,∴∠AGE=90°,∴FG⊥AD;(3)解:直線l是圓O的切線,理由如下:作OH⊥AB于H,連接OB,如圖所示:∵AE=1,BE=3,∴AB=AE+BE=4,∵OH⊥AB,∴AH=BH=AB=2,∴EH=AH﹣AE=1,∴OH===1,∴OB===,即⊙O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南活動策劃方案公司(3篇)
- 班級服務(wù)與安全管理制度(3篇)
- 病理科試劑管理制度(3篇)
- 美國非稅收入管理制度(3篇)
- 設(shè)備創(chuàng)新工作管理制度(3篇)
- 《GA 814-2009警用約束帶》專題研究報告:技術(shù)創(chuàng)新、應用深化與未來展望
- 納稅評估培訓
- 中學學生社團活動風險管理制度
- 養(yǎng)老院消防通道及疏散預案制度
- 2026河北省定向長安大學選調(diào)生招錄考試備考題庫附答案
- 2026年年長租公寓市場分析
- 生態(tài)環(huán)境監(jiān)測數(shù)據(jù)分析報告
- 金融機構(gòu)衍生品交易操作規(guī)范
- 醫(yī)院檢查、檢驗結(jié)果互認制度
- 學堂在線 雨課堂 學堂云 實繩結(jié)技術(shù) 章節(jié)測試答案
- 110kV線路運維方案
- 智能化弱電工程常見質(zhì)量通病的避免方法
- 《中國古代文學通識讀本》pdf
- 罐區(qū)加溫操作規(guī)程
- 昆明醫(yī)科大學第二附屬醫(yī)院進修醫(yī)師申請表
- 國有企業(yè)干部選拔任用工作系列表格優(yōu)質(zhì)資料
評論
0/150
提交評論