浙江省杭州濱江區(qū)六校聯(lián)考2026屆數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第1頁
浙江省杭州濱江區(qū)六校聯(lián)考2026屆數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第2頁
浙江省杭州濱江區(qū)六校聯(lián)考2026屆數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第3頁
浙江省杭州濱江區(qū)六校聯(lián)考2026屆數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第4頁
浙江省杭州濱江區(qū)六校聯(lián)考2026屆數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省杭州濱江區(qū)六校聯(lián)考2026屆數(shù)學(xué)九年級第一學(xué)期期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.2.如圖,AB是⊙O的直徑,BT是⊙O的切線,若∠ATB=45°,AB=2,則陰影部分的面積是(

)A.2 B.1 C.32-3.拋物線y=(x﹣1)2+3的頂點坐標(biāo)是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)4.如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有()A.1個 B.2個 C.3個 D.4個5.如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結(jié)論:①AE⊥BF;②AE=BF;③BG=GE;④S四邊形CEGF=S△ABG,其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個6.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°7.等腰三角形的一邊長等于4,一邊長等于9,則它的周長是()A.17 B.22 C.17或22 D.138.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),說法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是拋物線上兩點,則y1>y2,其中說法正確的有()個.A.1 B.2 C.3 D.49.下列是世界各國銀行的圖標(biāo),其中不是軸對稱圖形的是()A. B. C. D.10.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中線,以C為圓心,5cm為半徑作⊙C,則點M與⊙C的位置關(guān)系為()A.點M在⊙C上 B.點M在⊙C內(nèi) C.點M在⊙C外 D.點M不在⊙C內(nèi)11.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.12.若要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.先向右平移1個單位長度,再向上平移2個單位長度B.先向左平移1個單位長度,再向上平移2個單位長度C.先向左平移1個單位長度,再向下平移2個單位長度D.先向右平移1個單位長度,再向下平移2個單位長度二、填空題(每題4分,共24分)13.如圖,在平面直角坐標(biāo)系中,已知A(1.5,0),D(4.5,0),△ABC與△DEF位似,原點O是位似中心.若DE=7.5,則AB=_____.14.在中,若,則是_____三角形.15.因式分解:_______________________.16.如圖,BA是⊙C的切線,A為切點,AC=1,AB=2,點D是⊙C上的一個動點,連結(jié)BD并延長,交AC的延長線于E,則EC的最大值為_______.17.75°的圓心角所對的弧長是2.5cm,則此弧所在圓的半徑是_____cm.18.如圖,在矩形中,,點分別在矩形的各邊上,,則四邊形的周長是______________.三、解答題(共78分)19.(8分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.(1)求證:∠BAC=∠AED;(2)在邊AC取一點F,如果∠AFE=∠D,求證:.20.(8分)周老師家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應(yīng)值如下表所示:(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)從你學(xué)過的函數(shù)中,選擇合適的函數(shù)類型刻畫P隨x的變化規(guī)律,請直接寫出P與x的函數(shù)關(guān)系式及自變量x的取值范圍;(3)求出銷售額W在哪一天達到最大,最大銷售額是多少元?21.(8分)意外創(chuàng)傷隨時可能發(fā)生,急救是否及時、妥善,直接關(guān)系到病人的安危.為普及急救科普知識,提高學(xué)生的急救意識與現(xiàn)場急救能力,某校開展了急救知識進校園培訓(xùn)活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的培訓(xùn)效果,該校舉行了相關(guān)的急救知識競賽.現(xiàn)從兩個年級各隨機抽取20名學(xué)生的急救知識競賽成績(百.分制)進行分析,過程如下:收集數(shù)據(jù):七年級:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.八年級:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理數(shù)據(jù):40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年級010a71八年級1007b2分析數(shù)據(jù):平均數(shù)眾數(shù)中位數(shù)七年級7875c八年級78d80.5應(yīng)用數(shù)據(jù):(1)由上表填空:a=;b=;c=;d=.(2)估計該校七、八兩個年級學(xué)生在本次競賽中成績在80分及以上的共有多少人?(3)你認(rèn)為哪個年級的學(xué)生對急救知識掌握的總體水平較好,請說明理由.22.(10分)已知二次函數(shù)y=ax2+bx+4經(jīng)過點(2,0)和(﹣2,12).(1)求該二次函數(shù)解析式;(2)寫出它的圖象的開口方向、頂點坐標(biāo)、對稱軸;(3)畫出函數(shù)的大致圖象.23.(10分)如圖,己知是的直徑,切于點,過點作于點,交于點,連接、.(1)求證:是的切線:(2)若,,求陰影部分面積.24.(10分)某日,深圳高級中學(xué)(集團)南北校區(qū)初三學(xué)生參加?xùn)|校區(qū)下午時的交流活動,南校區(qū)學(xué)生中午乘坐校車出發(fā),沿正北方向行12公里到達北校區(qū),然后南北校區(qū)一同前往東校區(qū)(等待時間不計).如圖所示,已知東校區(qū)在南校區(qū)北偏東方向,在北校區(qū)北偏東方向.校車行駛狀態(tài)的平均速度為,途中一共經(jīng)過30個紅綠燈,平均每個紅綠燈等待時間為30秒.(1)求北校區(qū)到東校區(qū)的距離;(2)通過計算,說明南北校區(qū)學(xué)生能否在前到達東校區(qū).(本題參考數(shù)據(jù):,)25.(12分)如圖,在平面直角坐標(biāo)系中,拋物線(a≠0)與y軸交與點C(0,3),與x軸交于A、B兩點,點B坐標(biāo)為(4,0),拋物線的對稱軸方程為x=1.(1)求拋物線的解析式;(2)點M從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點N從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設(shè)△MBN的面積為S,點M運動時間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;(3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.26.某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:(1)求y與x的函數(shù)解析式(也稱關(guān)系式);(2)求這一天銷售西瓜獲得的利潤的最大值.

參考答案一、選擇題(每題4分,共48分)1、D【分析】由折疊的性質(zhì)可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關(guān)鍵.2、B【分析】設(shè)AT交⊙O于點D,連結(jié)BD,根據(jù)圓周角定理可得∠ADB=90°,再由切線性質(zhì)結(jié)合已知條件得△BDT和△ABD都為等腰直角三角形,由S陰=S△BDT計算即可得出答案.【詳解】設(shè)AT交⊙O于點D,連結(jié)BD,如圖:∵AB是⊙O的直徑,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切線,∴△BDT和△ABD都為等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面積等于弓形BD的面積,∴S陰=S△BDT=12×2×2故答案為B.本題考查了切線的性質(zhì),圓周角定理,等腰直角三角形的判定,解決本題的關(guān)鍵是利用等腰直角三角形的性質(zhì)把陰影部分的面積轉(zhuǎn)化為三角形的面積.3、A【分析】根據(jù)頂點式解析式寫出頂點坐標(biāo)即可.【詳解】解:拋物線y=(x﹣1)2+3的頂點坐標(biāo)是(1,3).故選:A.【點晴】本題考查了二次函數(shù)的性質(zhì),主要是利用頂點式解析式寫頂點的方法,需熟記.4、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又點F為BC的中點,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正確;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正確;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等邊三角形,故④正確;由題給條件,證不出CM=DM,故①錯誤.故正確的有②③④,共3個.故選C.5、C【分析】根據(jù)正方形的性質(zhì)證明△ABE≌△BCF,可證得①AE⊥BF;

②AE=BF正確;證明△BGE∽△ABE,可得==,故③不正確;由S△ABE=S△BFC可得S四邊形CEGF=S△ABG,故④正確.【詳解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,

又∵BE=CF,

∴△ABE≌△BCF(SAS),

∴AE=BF,∠BAE=∠CBF,

∴∠FBC+∠BEG=∠BAE+∠BEG=90°,

∴∠BGE=90°,

∴AE⊥BF,故①,②正確;

∵CF=2FD,BE=CF,AB=CD,

∴=,

∵∠EBG+∠ABG=∠ABG+∠BAG=90°,

∴∠EBG=∠BAE,

∵∠EGB=∠ABE=90°,

∴△BGE∽△ABE,

∴==,即BG=GE,故③不正確,

∵△ABE≌△BCF,

∴S△ABE=S△BFC,

∴S△ABE?S△BEG=S△BFC?S△BEG,

∴S四邊形CEGF=S△ABG,故④正確.

故選:C.本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識點,解決問題的關(guān)鍵是熟練掌握正方形的性質(zhì).6、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.7、B【分析】題目給出等腰三角形有兩條邊長為4和9,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為4時,4+4<9,不能構(gòu)成三角形;當(dāng)腰為9時,4+9>9,所以能構(gòu)成三角形,周長是:9+9+4=1.故選B.本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形,這點非常重要,也是解題的關(guān)鍵.8、D【分析】由拋物線開口方向得到a>0,根據(jù)拋物線的對稱軸得b=2a>0,則2a﹣b=0,則可對②進行判斷;根據(jù)拋物線與y軸的交點在x軸下方得到c<0,則abc<0,于是可對①進行判斷;由于x=﹣1時,y<0,則得到a﹣2a+c<0,則可對③進行判斷;通過點(﹣5,y1)和點(,y2)離對稱軸的遠近對④進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線對稱軸為直線x=﹣=﹣1,∴b=2a>0,則2a﹣b=0,所以②正確;∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc<0,所以①正確;∵x=﹣1時,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正確;∵點(﹣5,y1)離對稱軸要比點(,y2)離對稱軸要遠,∴y1>y2,所以④正確.故答案為D.本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,靈活運用二次函數(shù)解析式和圖像是解答本題的關(guān)鍵..9、D【解析】本題考查的是軸對稱圖形的定義.把圖形沿某條直線折疊直線兩旁的部分能夠重合的圖形叫軸對稱圖形.A、B、C都可以,而D不行,所以D選項正確.10、A【解析】根據(jù)題意可求得CM的長,再根據(jù)點和圓的位置關(guān)系判斷即可.【詳解】如圖,∵由勾股定理得AB==10cm,∵CM是AB的中線,∴CM=5cm,∴d=r,所以點M在⊙C上,故選A.本題考查了點和圓的位置關(guān)系,解決的根據(jù)是點在圓上?圓心到點的距離=圓的半徑.11、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.12、A【分析】找出兩拋物線的頂點坐標(biāo),由a值不變即可找出結(jié)論.【詳解】∵拋物線y=(x-1)1+1的頂點坐標(biāo)為(1,1),拋物線y=x1的頂點坐標(biāo)為(0,0),∴將拋物線y=x1先向右平移1個單位長度,再向上平移1個單位長度即可得出拋物線y=(x-1)1+1.故選:A.本題考查了二次函數(shù)圖象與幾何變換,通過平移頂點找出結(jié)論是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、2.1.【分析】利用以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k得到位似比為,然后根據(jù)相似的性質(zhì)計算AB的長.【詳解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC與△DEF位似,原點O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案為2.1.本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.14、等腰【分析】根據(jù)絕對值和平方的非負性求出sinA和tanB的值,再根據(jù)銳角三角函數(shù)的特殊值求出∠A和∠B的角度,即可得出答案.【詳解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案為等腰.本題考查的是特殊三角函數(shù)值,比較簡單,需要牢記特殊三角函數(shù)值.15、【分析】先提公因式,再用平方差公式分解.【詳解】解:本題考查因式分解,掌握因式分解方法是關(guān)鍵.16、【分析】連接BC,過C作于點F,由圖易知,當(dāng),即BD與圓相切時,CE最大,設(shè)EC最大值為x,根據(jù)相似三角形的性質(zhì)得到,代入求值即可;【詳解】連接BC,過C作于點F,由圖易知,當(dāng),即BD與圓相切時,CE最大,設(shè)EC最大值為x,∵,∴,∴,∴,即,解得;故答案是.本題主要考查了相似三角形對應(yīng)線段成比例和圓的切線性質(zhì),準(zhǔn)確計算是解題的關(guān)鍵.17、1【分析】由弧長公式:計算.【詳解】解:由題意得:圓的半徑.故本題答案為:1.本題考查了弧長公式.18、【分析】根據(jù)矩形的對角線相等,利用勾股定理求出對角線的長度,然后根據(jù)平行線分線段成比例定理列式表示EF、EH的長度之和,再根據(jù)四邊形EFGH是平行四邊形,即可得解.【詳解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四邊形EFGH是平行四邊形,∴四邊形EFGH的周長=,故答案為:.本題考查了平行線分線段成比例定理、矩形的對角線相等和勾股定理,根據(jù)平行線分線段成比例定理得出是解題的關(guān)鍵,也是本題的難點.三、解答題(共78分)19、見解析【解析】(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.本題考查相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.20、(1);(2)(x取整數(shù));(3)第10天銷售額達到最大,最大銷售額是4500元【分析】(1)是分段函數(shù),利用待定系數(shù)法可得y與x的函數(shù)關(guān)系式;

(2)從表格中的數(shù)據(jù)上看,是成一次函數(shù),且也是分段函數(shù),同理可得p與x的函數(shù)關(guān)系式;

(3)根據(jù)銷售額=銷量×銷售單價,列函數(shù)關(guān)系式,并配方可得結(jié)論.【詳解】解:(1)①當(dāng)時,設(shè)(),把點(0,14),(5,9)代入,得,解得:,∴;②當(dāng)時,,∴(x取整數(shù));(2)∴(x取整數(shù));(3)設(shè)銷售額為元,①當(dāng)時,=,∴當(dāng)時,;②當(dāng)時,,∴當(dāng)時,;③當(dāng)時,,∴當(dāng)時,,綜上所述:第10天銷售額達到最大,最大銷售額是4500元;本題考查了二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.最大利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實際選擇最優(yōu)方案.21、(1)11,10,78.5,81;(2)600人;(3)八年級學(xué)生總體水平較好.理由:兩個年級平均分相同,但八年級中位數(shù)更大,或八年級眾數(shù)更大.(言之成理即可).【分析】(1)根據(jù)已知數(shù)據(jù)及中位數(shù)和眾數(shù)的概念求解可得;(2)利用樣本估計總體思想求解可得;(3)答案不唯一,合理均可.【詳解】解:(1)由題意知a=11,b=10,將七年級成績重新排列為:59,70,72,73,75,75,75,76,1,1,78,79,80,80,81,83,85,86,87,94,∴其中位數(shù)c==78.5,八年級成績的眾數(shù)d=81,故答案為:11,10,78.5,81;(2)由樣本數(shù)據(jù)可得,七年級得分在80分及以上的占=,故七年級得分在80分及以上的大約600×=240人;八年級得分在80分及以上的占=,故八年級得分在80分及以上的大約600×=360人.故共有600人.(3)該校八年級學(xué)生對急救知識掌握的總體水平較好.理由:兩個年級平均分相同,但八年級中位數(shù)更大,或八年級眾數(shù)更大.(言之成理即可).本題考查了眾數(shù)、中位數(shù)以及平均數(shù),掌握眾數(shù)、中位數(shù)以及平均數(shù)的定義是解題的關(guān)鍵.22、(1);(2)向上,(1,﹣),直線x=1;(1)詳見解析.【分析】(1)直接利用待定系數(shù)法即可得到拋物線解析式;(2)根據(jù)二次函數(shù)的性質(zhì)求解;(1)利用描點法畫函數(shù)圖象.【詳解】(1)由題意得:解得:,∴拋物線解析式為:;(2)∵(x﹣1)2,∴圖象的開口方向向上,頂點為,對稱軸為直線x=1.故答案為:向上,(1,),直線x=1;(1)如圖;.本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時,要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當(dāng)已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.也考查了二次函數(shù)的圖象與性質(zhì).23、(1)證明見解析;(2)【分析】(1)連結(jié),由半徑相等得到∠OBC=∠OCB,由垂徑定理可知是的垂直平分線,得到PB=PC,因此∠PBC=∠PCB,從而可以得到∠PCO=90°,即可得證;(2)陰影部分的面積即為扇形OAC的面積減去△OAC的面積,通過,,利用扇形面積公式和三角形計算公式計算即可.【詳解】(1)證明:連結(jié),如圖∵∴又∵為圓的直徑,切圓于點∴,又∵∴∴是的垂直平分線∴,,即∴是圓的切線(2)由(1)知、為圓的切線∴∵,∴,又∵為圓的直徑∴∴,∴,∴本題考查了切線的判定和扇形面積公式的應(yīng)用,理解弓形面積為扇形面積與三角形面積之差是解題的關(guān)鍵.24、(1);(2)能.【分析】(1)過點作于點,然后在兩個直角三角形中通過三角函數(shù)分別計算出AE、AC即可;(2)算出總路程求出汽車行駛的時間,加上等紅綠燈的時間即為總時間,即可作出判斷.【詳解】解:(1)過點作于點.依題意有:,,,則,∵,∴,∴(2)總用時為:分鐘分鐘,∴能規(guī)定時間前到達.本題考查了三角函數(shù)的應(yīng)用,把非直角三角形的問題通過作輔助線化為直角三角形的問題是解題關(guān)鍵.25、(1);(2)S=,運動1秒使△PBQ的面積最大,最大面積是;(3)t=或t=.【分析】(1)把點A、B、C的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b、c的解析式,通過解方程組求得它們的值;(2)設(shè)運動時間為t秒.利用三角形的面積公式列出S△MBN與t的函數(shù)關(guān)系式.利用二次函數(shù)的圖象性質(zhì)進行解答;(3)根據(jù)余弦函數(shù),可得關(guān)于t的方程,解方程,可得答案.【詳解】(1)∵點B坐標(biāo)為(4,0),拋物線的對稱軸方程為x=1,∴A(﹣2,0),把點A(﹣2,0)、B(4,0)、點C(0,3),分別代入(a≠0),得:,解得:,所以該拋物線的解析式為:;(2)設(shè)運動時間為t秒,則A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論