人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)評(píng)練習(xí)題(含答案詳解)_第1頁
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)評(píng)練習(xí)題(含答案詳解)_第2頁
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)評(píng)練習(xí)題(含答案詳解)_第3頁
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)評(píng)練習(xí)題(含答案詳解)_第4頁
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)評(píng)練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知,則圖中全等三角形的總對(duì)數(shù)是A.3 B.4 C.5 D.62、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,可知的度數(shù)為()A. B. C. D.3、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長(zhǎng)為()A. B. C. D.4、如圖,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,則∠EAC的度數(shù)為()A.40° B.30° C.35° D.25°5、如圖,平行四邊形ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠26、下列說法正確的是(

)A.形狀相同的兩個(gè)三角形全等 B.面積相等的兩個(gè)三角形全等C.完全重合的兩個(gè)三角形全等 D.所有的等邊三角形全等7、如圖,若,則下列結(jié)論中不一定成立的是(

)A. B. C. D.8、如圖,在中,,D是上一點(diǎn),于點(diǎn)E,,連接,若,則等于(

)A. B. C. D.9、如圖,在中,,,,平分交于D點(diǎn),E,F(xiàn)分別是,上的動(dòng)點(diǎn),則的最小值為(

)A. B. C.3 D.10、如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F(xiàn),若BE=3,AF=5,則AC的長(zhǎng)為(

)A. B. C.10 D.8第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、已知∠AOB=60°,以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為__________.2、如圖,是一個(gè)中心對(duì)稱圖形,A為對(duì)稱中心,若,則________,________.3、如圖是教科書中的一個(gè)片段,由畫圖我們可以得到△,判定這兩個(gè)三角形全等的依據(jù)是__.(1)畫;(2)分別以點(diǎn),為圓心,線段,長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn);(3)連接線段,.4、如圖,在△ABC中,點(diǎn)D是AC的中點(diǎn),分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.5、如圖,在矩形ABCD中,AB=8cm,AD=12cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC邊向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C停止,同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以vcm/s的速度沿CD邊向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止,規(guī)定其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)v為______時(shí),△ABP與△PCQ全等.6、如圖所示的網(wǎng)格是正方形網(wǎng)格,點(diǎn)A,B,C,D均落在格點(diǎn)上,則∠BAD+∠ADC=_____.7、如圖,給出下列結(jié)論:①;②;③;④.其中正確的有_______(填寫答案序號(hào)).8、如圖,在Rt△ABC中,∠B=90°,以頂點(diǎn)C為圓心、適當(dāng)長(zhǎng)為半徑畫弧,分別交AC、BC于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,以大于EF的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線CP交AB于點(diǎn)D.若BD=4,AC=16,則△ACD的面積是______.9、如圖所示,點(diǎn)在一塊直角三角板上(其中),于點(diǎn),于點(diǎn),若,則_________度.10、如圖,的三邊,,的長(zhǎng)分別是10,15,20,其三條角平分線相交于點(diǎn)O,連接OA,OB,OC,將分成三個(gè)三角形,則等于__________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,A,B,C,D依次在同一條直線上,,BF與EC相交于點(diǎn)M.求證:.2、如圖,已知:正方形,點(diǎn),分別是,上的點(diǎn),連接,,,且,求證:.3、如圖,在中,,點(diǎn)在的延長(zhǎng)線上,于點(diǎn),若,求證:.4、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.5、如圖,在中,,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點(diǎn)D從B向C運(yùn)動(dòng)時(shí),逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當(dāng)DC的長(zhǎng)度是多少時(shí),,并說明理由.-參考答案-一、單選題1、D【解析】【分析】根據(jù)全等三角形的判定方法進(jìn)行判斷.全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件.【詳解】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故選D.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì)的運(yùn)用,解題時(shí)注意:若已知兩邊對(duì)應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對(duì)應(yīng)相等,則必須再找一組對(duì)邊對(duì)應(yīng)相等,或者是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個(gè)角的另一組對(duì)應(yīng)鄰邊.2、C【解析】【分析】利用等腰三角形的性質(zhì)和基本作圖得到,則平分,利用和三角形內(nèi)角和計(jì)算出,從而得到的度數(shù).【詳解】由作法得,∵,∴平分,,∵,∴.故選C.【考點(diǎn)】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點(diǎn)作已知直線的垂線).也考查了等腰三角形的性質(zhì).3、A【解析】【分析】延長(zhǎng)FE交BC于點(diǎn)D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長(zhǎng)FE交BC于點(diǎn)D,作EG⊥AB于點(diǎn)G,作EH⊥AC于點(diǎn)H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點(diǎn)】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)三角形的內(nèi)角和定理列式求出∠BAC,再根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DAE=∠BAC,然后根據(jù)∠EAC=∠DAE-∠DAC代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.【詳解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故選C.【考點(diǎn)】本題考查了全等三角形對(duì)應(yīng)角相等的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.5、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因?yàn)椤螦BD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯(cuò)誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.6、C【解析】【分析】根據(jù)全等形的概念:能夠完全重合的兩個(gè)圖形叫做全等形,以及全等三角形的判定定理可得答案.【詳解】解:A、形狀相同的兩個(gè)三角形全等,說法錯(cuò)誤,應(yīng)該是形狀相同且大小也相同的兩個(gè)三角形全等;B、面積相等的兩個(gè)三角形全等,說法錯(cuò)誤;C、完全重合的兩個(gè)三角形全等,說法正確;D、所有的等邊三角形全等,說法錯(cuò)誤;故選:C.【考點(diǎn)】此題主要考查了全等圖形,關(guān)鍵是掌握全等形的概念.7、A【解析】【分析】根據(jù)翻三角形全等的性質(zhì)一一判斷即可.【詳解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D選項(xiàng)不符合題意,故選:A.【考點(diǎn)】本題考了三角形全等的性質(zhì),解題的關(guān)鍵是三角形全等的性質(zhì).8、C【解析】【分析】證明Rt△BCD≌Rt△BED(HL),由全等三角形的性質(zhì)得出CD=DE,則可得出答案.【詳解】解:,,在和中,,,,,cm,cm.故選:C.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.9、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點(diǎn)C到AB的垂線段長(zhǎng)度.【詳解】在AB上取一點(diǎn)G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點(diǎn)共線時(shí),符合要求,此時(shí),作CH⊥AB于H點(diǎn),則CH的長(zhǎng)即為CE+EG的最小值,此時(shí),,∴CH==,即:CE+EF的最小值為,故選:D.【考點(diǎn)】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.10、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因?yàn)镋F為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點(diǎn)】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.二、填空題1、或【解析】【分析】以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,則OP為的平分線,以O(shè)P為邊作,則為作或的角平分線,即可求解.【詳解】解:以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,得到OP為的平分線,再以O(shè)P為邊作,則為作或的角平分線,所以或.故答案為:或.【考點(diǎn)】本題考查的是復(fù)雜作圖,主要要理解作圖是在作角的平分線,同時(shí)要考慮以O(shè)P為邊作的兩種情況,避免遺漏.2、

30°

2【解析】【分析】根據(jù)中心對(duì)稱圖形的性質(zhì),得到,再由全等三角形的性質(zhì)解題即可.【詳解】解:∵A為對(duì)稱中心,∴繞點(diǎn)A旋轉(zhuǎn)能與重合,∴,∴,,∴.【考點(diǎn)】本題考查中心對(duì)稱圖形的性質(zhì)、全等三角形的性質(zhì)等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.3、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點(diǎn)】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識(shí),解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識(shí)解決問題.4、2【解析】【分析】延長(zhǎng)BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進(jìn)而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長(zhǎng)BD到E,使DE=BD,連接AE,∵點(diǎn)D是AC的中點(diǎn),∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).5、2或【解析】【詳解】可分兩種情況:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分別計(jì)算出t的值,進(jìn)而得到v的值.【解答】解:①當(dāng)BP=CQ,AB=PC時(shí),△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②當(dāng)BA=CQ,PB=PC時(shí),△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,綜上所述,當(dāng)v=2或時(shí),△ABP與△PQC全等,故答案為:2或.【考點(diǎn)】此題考查了動(dòng)點(diǎn)問題,全等三角形的性質(zhì)的應(yīng)用,解一元一次方程,正確理解全等三角形的性質(zhì)得到相等的對(duì)應(yīng)邊求出t是解題的關(guān)鍵.6、或度【解析】【分析】證明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根據(jù)同角的余角相等和三角形的內(nèi)角和可得結(jié)論.【詳解】解:如圖,設(shè)AB與CD相交于點(diǎn)F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案為:90度.【考點(diǎn)】本題網(wǎng)格型問題,考查了三角形全等的性質(zhì)和判定及直角三角形各角的關(guān)系,本題構(gòu)建全等三角形是關(guān)鍵.7、①③④【解析】【分析】利用AAS可證明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差關(guān)系可得∠EAM=∠FAN,可得③正確,利用ASA可證明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正確;根據(jù)線段的和差關(guān)系可得CM=BN,利用AAS可證明△CDM≌△BDN,可得CD=DB,可得②錯(cuò)誤;利用ASA可證明△ACN≌△ABM,可得④正確;綜上即可得答案.【詳解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正確,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正確,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②錯(cuò)誤,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正確,綜上所述:正確的結(jié)論有①③④,故答案為:①③④【考點(diǎn)】本題考查全等三角形的判定與性質(zhì),判定兩個(gè)三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形確定,當(dāng)利用SAS證明時(shí),角必須是兩邊的夾角;熟練掌握全等三角形的判定定理是解題關(guān)鍵.8、32【解析】【分析】過點(diǎn)D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計(jì)算即可.【詳解】解:如圖,過點(diǎn)D作DQ⊥AC于點(diǎn)Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點(diǎn)】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).9、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點(diǎn)O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點(diǎn)】本題考查角平分線的定義及判定,熟練掌握“到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上”是解題的關(guān)鍵.10、2:3:4【解析】【分析】過點(diǎn)O分別向三邊作垂線段,通過角平分線的性質(zhì)得到三條垂線段長(zhǎng)度相等,再通過面積比等于底邊長(zhǎng)度之比得到答案.【詳解】解:過點(diǎn)O分別向BC、BA、AC作垂線段交于D、E、F三點(diǎn).∵CO、BO、AO分別平分∴∵,,∴故答案為:2:3:4【考點(diǎn)】本題考查了角平分線的性質(zhì),往三角形的三邊作垂線段并得到面積之比等于底之比是解題關(guān)鍵.三、解答題1、見解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS證明△AEC≌△DFB,即可得結(jié)論.【詳解】證明:,,.在和中,,.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.2、見解析.【解析】【分析】將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得GD=BE,AG=AE,∠DAG=∠BAE,然后求出∠FAG=∠EAF,再利用“邊角邊”證明△AEF和△AGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得EF=FG,即可得出結(jié)論.【詳解】如解圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至的位置,使與重合.∴,.∵.∴,∴.在和中,,∴.∴.∵,∴.【考點(diǎn)】本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),難點(diǎn)在于利用旋轉(zhuǎn)變換作出全等三角形.3、證明見解析【解析】【分析】利用AAS證明,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】證明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論