考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測試試題(解析版)_第1頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測試試題(解析版)_第2頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測試試題(解析版)_第3頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測試試題(解析版)_第4頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測試試題(解析版)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對稱點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、將按如圖方式放在平面直角坐標(biāo)系中,其中,,頂點(diǎn)的坐標(biāo)為,將繞原點(diǎn)逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)60°,則第2023次旋轉(zhuǎn)結(jié)束時,點(diǎn)對應(yīng)點(diǎn)的坐標(biāo)為(

)A. B. C. D.3、小明把一副三角板按如圖所示疊放在一起,固定三角板ABC,將另一塊三角板DEF繞公共頂點(diǎn)B順時針旋轉(zhuǎn)(旋轉(zhuǎn)角度不超過180°).若兩塊三角板有一邊平行,則三角板DEF旋轉(zhuǎn)的度數(shù)可能是(

)A.15°或45° B.15°或45°或90°C.45°或90°或135° D.15°或45°或90°或135°4、如圖,已知正方形的邊長為3,點(diǎn)E是邊上一動點(diǎn),連接,將繞點(diǎn)E順時針旋轉(zhuǎn)到,連接,則當(dāng)之和取最小值時,的周長為(

)A. B. C. D.5、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形6、如圖,在矩形中,,,是矩形的對稱中心,點(diǎn)、分別在邊、上,連接、,若,則的值為(

)A. B. C. D.7、如圖,將斜邊為4,且一個角為30°的直角三角形AOB放在直角坐標(biāo)系中,兩條直角邊分別與坐標(biāo)軸重合,D為斜邊的中點(diǎn),現(xiàn)將三角形AOB繞O點(diǎn)順時針旋轉(zhuǎn)120°得到三角形EOC,則點(diǎn)D對應(yīng)的點(diǎn)的坐標(biāo)為()A.(1,﹣) B.(,1) C.(2,﹣2) D.(2,﹣2)8、如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)得到△A'B'C',則旋轉(zhuǎn)中心的坐標(biāo)是(

)A.(1,1) B.(1,﹣1) C.(0,0) D.(1,﹣2)9、如圖,四邊形是菱形,,且,為對角線(不含點(diǎn))上任意一點(diǎn),將繞點(diǎn)逆時針旋轉(zhuǎn)得到,當(dāng)取最小值時的長(

)A. B.3 C.1 D.210、觀察下列圖案,能通過左圖順時針旋轉(zhuǎn)90°得到的()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、在平面直角坐標(biāo)系中點(diǎn)M(2,﹣4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為_____.2、如圖,在中,,,,將繞點(diǎn)逆時針旋轉(zhuǎn)得到,連接,則的長為__________.3、定義:在平面內(nèi),一個點(diǎn)到圖形的距離是這個點(diǎn)到這個圖上所有點(diǎn)的最長距離,在平面內(nèi)有一個正方形,邊長為4,中心為O,在正方形外有一點(diǎn)P,OP=4,當(dāng)正方形繞著點(diǎn)O旋轉(zhuǎn)時,則點(diǎn)P到正方形的最長距離的最小值為____________.4、如圖,點(diǎn)E是正方形ABCD邊BC上一點(diǎn),連接AE,將△ABE繞著點(diǎn)A逆時針旋轉(zhuǎn)到△AFG的位置(點(diǎn)F在正方形ABCD內(nèi)部),連接DG.若AB=10,BE=6,,則CH=___.5、在中,頂點(diǎn),,.將與正方形組成的圖形繞點(diǎn)逆時針旋轉(zhuǎn),每次旋轉(zhuǎn),則第2022次旋轉(zhuǎn)結(jié)束時,點(diǎn)的坐標(biāo)是________.6、若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,則______;7、如圖,矩形ABCD中,AB=2,BC=1,將矩形ABCD繞頂點(diǎn)C順時針旋轉(zhuǎn)90°,得到矩形EFCG,連接AE,取AE的中點(diǎn)H,連接DH,則_______.8、如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,1),N(2,0),△MNP和△M1N1P1的頂點(diǎn)都在格點(diǎn)上,△MNP與△M1N1P1是關(guān)于某一點(diǎn)中心對稱,則對稱中心的坐標(biāo)為_____.9、如圖,把△ABC繞著點(diǎn)A逆時針旋轉(zhuǎn)90°得到△ADE,連接BE,CD,M是BE的中點(diǎn),若AM=,則CD的長為_______.10、如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,點(diǎn)D在線段BC上,BD=3,將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到線段AE,EF⊥AC,垂足為點(diǎn)F.則AF的長為________.三、解答題(6小題,每小題5分,共計30分)1、圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片△ABC和△CDE疊放在一起(C與C'重合)的圖形.(1)感知:固定△ABC,將△CDE繞點(diǎn)C按順時針方向旋轉(zhuǎn)20°,連結(jié)AD,BE,如圖2,則可證△CBE≌△CAD,依據(jù);進(jìn)而得到線段BE=AD,依據(jù).(2)探究:若將圖1中的△CDE,繞點(diǎn)C按順時針方向旋轉(zhuǎn)120°,使點(diǎn)B、C、D在同一條直線上,連結(jié)AD、BE,如圖3.①線段BE與AD之間是否仍存在(1)中的結(jié)論?若是,請證明;若不是,請直接寫出BE與AD之間的數(shù)量關(guān)系;②∠APB的度數(shù)=.(3)應(yīng)用:若將圖1中的△CDE,繞點(diǎn)C按逆時針方向旋轉(zhuǎn)一個角度α(0<α<360°),當(dāng)α等于多少度時,△BCD的面積最大?請直接寫出答案.2、如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD、CE交于點(diǎn)F.(1)求證:;(2)若AB=2,,當(dāng)四邊形ADFC是菱形時,求BF的長.3、規(guī)定:在平面內(nèi),如果一個圖形繞一個定點(diǎn)旋轉(zhuǎn)一定的角度α(0°<α≤180°)后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)動的這個角度α稱為這個圖形的一個旋轉(zhuǎn)角.例如:正方形繞著兩條對角線的交點(diǎn)O旋轉(zhuǎn)90°或180°后,能與自身重合(如圖1),所以正方形是旋轉(zhuǎn)對稱圖形,且有兩個旋轉(zhuǎn)角.根據(jù)以上規(guī)定,回答問題:(1)下列圖形是旋轉(zhuǎn)對稱圖形,但不是中心對稱圖形的是________;A.矩形

B.正五邊形

C.菱形

D.正六邊形(2)下列圖形中,是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有:________(填序號);

(3)下列三個命題:①中心對稱圖形是旋轉(zhuǎn)對稱圖形;②等腰三角形是旋轉(zhuǎn)對稱圖形;③圓是旋轉(zhuǎn)對稱圖形,其中真命題的個數(shù)有(

)個;A.0

B.1

C.2

D.3(4)如圖2的旋轉(zhuǎn)對稱圖形由等腰直角三角形和圓構(gòu)成,旋轉(zhuǎn)角有45°,90°,135°,180°,將圖形補(bǔ)充完整.4、如圖,在等腰△ABC中,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不B、C重合),以AD為邊向右側(cè)作正方形ADEF,連接CF.【猜想】如圖①,當(dāng)點(diǎn)D在線段BC上時,直接寫出CF、BC、CD三條線段的數(shù)量關(guān)系.【探究】如圖②,當(dāng)點(diǎn)D在線段BC的延長線上時,判斷CF、BC,CD三條線段的數(shù)量關(guān)系,并說明理由.【應(yīng)用】如圖③,當(dāng)點(diǎn)D在線段BC的反向延長線上時,點(diǎn)A、F分別在直線BC兩側(cè),AE.DF交點(diǎn)為點(diǎn)O連接CO,若,,則.5、如圖,在10×8的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.(1)先將△ABC向下平移4個單位,得到△A′B′C′;(2)再將△A′B′C′繞點(diǎn)B′逆時針旋轉(zhuǎn)90°,得到△A′'B′C′'.畫出△A′B′C′和△A″B′C″.(用黑色水筆描粗各邊并標(biāo)出字母,不要求寫畫法)6、為等邊三角形,AB=8,AD⊥BC于點(diǎn)D,E為線段AD上一點(diǎn),.以AE為邊在直線AD右側(cè)構(gòu)造等邊三角形AEF,連接CE,N為CE的中點(diǎn).(1)如圖1,EF與AC交于點(diǎn)G,連接NG,BE,直接寫出NG與BE的數(shù)量關(guān)系;(2)如圖2,將繞點(diǎn)A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為,M為線段EF的中點(diǎn),連接DN,MN.當(dāng)時,猜想∠DNM的大小是否為定值,如果是定值,請寫出∠DNM的度數(shù)并證明,如果不是,請說明理由;(3)連接BN,在繞點(diǎn)A逆時針旋轉(zhuǎn)過程中,請直接寫出線段BN的最大值.-參考答案-一、單選題1、D【解析】【分析】先依據(jù),即可得出點(diǎn)P所在的象限,再根據(jù)兩個點(diǎn)關(guān)于原點(diǎn)對稱時,它們的坐標(biāo)符號相反,即可得出結(jié)論.【詳解】解:∵,∴點(diǎn)在第二象限,∴點(diǎn)關(guān)于原點(diǎn)對稱點(diǎn)在第四象限.故選D.【考點(diǎn)】本題主要考查了關(guān)于原點(diǎn)對稱的兩個點(diǎn)的坐標(biāo)特征,明確關(guān)于原點(diǎn)對稱的兩個點(diǎn)的橫、縱坐標(biāo)均互為相反數(shù)是解答的關(guān)鍵.2、A【解析】【分析】根據(jù)旋轉(zhuǎn)性質(zhì),可知6次旋轉(zhuǎn)為1個循環(huán),故先需要求出前6次循環(huán)對應(yīng)的A點(diǎn)坐標(biāo)即可,利用全等三角形性質(zhì)求出第一次旋轉(zhuǎn)對應(yīng)的A點(diǎn)坐標(biāo),之后第2次旋轉(zhuǎn),根據(jù)圖形位置以及長,即可求出,第3、4、5次分別利用關(guān)于原點(diǎn)中心對稱,即可求出,最后一次和A點(diǎn)重合,再判斷第2023次屬于循環(huán)中的第1次,最后即可得出答案.【詳解】解:由題意可知:6次旋轉(zhuǎn)為1個循環(huán),故只需要求出前6次循環(huán)對應(yīng)的A點(diǎn)坐標(biāo)即可第一次旋轉(zhuǎn)時:過點(diǎn)作軸的垂線,垂足為,如下圖所示:由的坐標(biāo)為可知:,,在中,,由旋轉(zhuǎn)性質(zhì)可知:,,,,在與中:,,,此時點(diǎn)對應(yīng)坐標(biāo)為,當(dāng)?shù)诙涡D(zhuǎn)時,如下圖所示:此時A點(diǎn)對應(yīng)點(diǎn)的坐標(biāo)為.當(dāng)?shù)?次旋轉(zhuǎn)時,第3次的點(diǎn)A對應(yīng)點(diǎn)與A點(diǎn)中心對稱,故坐標(biāo)為.當(dāng)?shù)?次旋轉(zhuǎn)時,第4次的點(diǎn)A對應(yīng)點(diǎn)與第1次旋轉(zhuǎn)的A點(diǎn)對應(yīng)點(diǎn)中心對稱,故坐標(biāo)為.當(dāng)?shù)?次旋轉(zhuǎn)時,第5次的點(diǎn)A對應(yīng)點(diǎn)與第2次旋轉(zhuǎn)的A點(diǎn)對應(yīng)點(diǎn)中心對稱,故坐標(biāo)為.第6次旋轉(zhuǎn)時,與A點(diǎn)重合.故前6次旋轉(zhuǎn),點(diǎn)A對應(yīng)點(diǎn)的坐標(biāo)分別為:、、、、、.由于,故第2023次旋轉(zhuǎn)時,A點(diǎn)的對應(yīng)點(diǎn)為.故選:A.【考點(diǎn)】本題主要是考查了旋轉(zhuǎn)性質(zhì)、中心對稱求點(diǎn)坐標(biāo)、三角形全等以及點(diǎn)的坐標(biāo)特征,熟練利用條件證明全等三角形,;通過旋轉(zhuǎn)和中心對稱求解對應(yīng)點(diǎn)坐標(biāo),是求解該題的關(guān)鍵.3、D【解析】【分析】分四種情況討論,由平行線的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可求解.【詳解】解:設(shè)旋轉(zhuǎn)的度數(shù)為α,若DE∥AB,則∠E=∠ABE=90°,∴α=90°-30°-45°=15°,若BE∥AC,則∠ABE=180°-∠A=120°,∴α=120°-30°-45°=45°,若BD∥AC,則∠ACB=∠CBD=90°,∴α=90°,當(dāng)點(diǎn)C,點(diǎn)B,點(diǎn)E共線時,∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°-45°=135°,綜上三角板DEF旋轉(zhuǎn)的度數(shù)可能是15°或45°或90°或135°.故選:D【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),平行線的性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.4、A【解析】【分析】連接BF,過點(diǎn)F作FG⊥AB交AB延長線于點(diǎn)G,通過證明△AED≌△GFE(AAS),確定F點(diǎn)在BF的射線上運(yùn)動;作點(diǎn)C關(guān)于BF的對稱點(diǎn)C',由三角形全等得到∠CBF=45°,從而確定C'點(diǎn)在AB的延長線上;當(dāng)D、F、C'三點(diǎn)共線時,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=3即可.【詳解】解:連接BF,過點(diǎn)F作FG⊥AB交AB延長線于點(diǎn)G,∵將ED繞點(diǎn)E順時針旋轉(zhuǎn)90°到EF,∴EF⊥DE,且EF=DE,∴△AED≌△GFE(AAS),∴FG=AE,∴F點(diǎn)在BF的射線上運(yùn)動,作點(diǎn)C關(guān)于BF的對稱點(diǎn)C',∵EG=DA,F(xiàn)G=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC′的角平分線,即F點(diǎn)在∠CBC′的角平分線上運(yùn)動,∴C'點(diǎn)在AB的延長線上,當(dāng)D、F、C'三點(diǎn)共線時,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∴DC'=3,∴DF+CF的最小值為3,∴此時的周長為.故選:A.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),軸對稱求最短路徑;能夠?qū)⒕€段的和通過軸對稱轉(zhuǎn)化為共線線段是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點(diǎn)】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、D【解析】【分析】連接AC,BD,過點(diǎn)O作于點(diǎn),交于點(diǎn),利用勾股定理求得的長即可解題.【詳解】解:如圖,連接AC,BD,過點(diǎn)O作于點(diǎn),交于點(diǎn),四邊形ABCD是矩形,同理可得故選:D.【考點(diǎn)】本題考查中心對稱、矩形的性質(zhì)、勾股定理等知識,學(xué)會添加輔助線,構(gòu)造直角三角形是解題關(guān)鍵.7、A【解析】【分析】根據(jù)題意畫出△AOB繞著O點(diǎn)順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,由旋轉(zhuǎn)的性質(zhì)得到∠DOD′=120°,根據(jù)AD=BD=OD=2,得到∠AOD度數(shù),進(jìn)而求出∠MOD′度數(shù)為30°,在直角三角形OMD′中求出OM與MD′的長,即可確定出D′的坐標(biāo).【詳解】解:根據(jù)題意畫出△AOB繞著O點(diǎn)順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,∴∠DOD′=120°,∵D為斜邊AB的中點(diǎn),∴AD=OD=AB=2,∴∠BAO=∠DOA=30°,∴∠MOD′=30°,在Rt△OMD′中,OD′=OD=2,∴MD′=1,OM==,則D的對應(yīng)點(diǎn)D′的坐標(biāo)為(1,﹣),故選:A.【考點(diǎn)】此題考查旋轉(zhuǎn)的性質(zhì),直角三角形斜邊中線等于斜邊的一半的性質(zhì),30度角所對的直角邊等于斜邊的一半的性質(zhì),勾股定理,正確掌握旋轉(zhuǎn)的性質(zhì)得到對應(yīng)的旋轉(zhuǎn)圖形進(jìn)行解答是解題的關(guān)鍵.8、A【解析】【分析】對應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心,然后直接寫成坐標(biāo)即可.【詳解】解:如圖點(diǎn)O′即為旋轉(zhuǎn)中心,坐標(biāo)為O′(1,1).故選:A【考點(diǎn)】本題主要考查了旋轉(zhuǎn)中心的確定方法,熟練掌握對應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心是解題的關(guān)鍵.9、D【解析】【分析】根據(jù)“兩點(diǎn)之間線段最短”,當(dāng)E,F,G,C共線時,AG+BG+CG的值最小,即等于EC的長.【詳解】解:如圖:∵將ΔABG繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到ΔEBF,∴BE=AB=BC,BF=BG,EF=AG,∴ΔBFG是等邊三角形,∴BF=BG=FG,∴AG+BG+CG=EF+FG+CG,根據(jù)“兩點(diǎn)之間線段最短”,∴當(dāng)E,F,G,C共線時,AG+BG+CG的值最小,即等于EC的長,過E點(diǎn)作EH⊥BC交CB的延長線于H,如上圖所示:∴∠EBH=60°,∵,∴,EH=3,∴EC=2EH=6,∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴,故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),菱形的性質(zhì),等邊三角形的性質(zhì),軸對稱最短路線問題,正確的作出輔助線是解題的關(guān)鍵.10、A【解析】【分析】根據(jù)旋轉(zhuǎn)的定義,觀察圖形即可解答.【詳解】根據(jù)旋轉(zhuǎn)的定義,圖片按順時針方向旋轉(zhuǎn)90度,大拇指指向右邊,其余4個手指指向下邊,從而可確定為A圖.故選A.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì),熟知性質(zhì)是解題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)在平面直角坐標(biāo)系中,若兩點(diǎn)關(guān)于原點(diǎn)對稱,則這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù),即可求解.【詳解】解:點(diǎn)M(2,﹣4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為故答案為:【考點(diǎn)】本題主要考查了兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱的特征,熟練掌握在平面直角坐標(biāo)系中,若兩點(diǎn)關(guān)于原點(diǎn)對稱,則這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù)是解題的關(guān)鍵.2、5【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【詳解】∵將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案為:5.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,熟練旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.3、##【解析】【分析】由題意以及正方形的性質(zhì)得OP過正方形ABCD的頂點(diǎn)時,點(diǎn)P到正方形的最長距離取得最小值,最小值為PA.【詳解】解:如圖,OP過頂點(diǎn)A時,點(diǎn)O與這個圖上所有點(diǎn)的連線中,OA最大,此時點(diǎn)P到正方形的最長距離取得最小值,最小值為PA,∵正方形ABCD邊長為2,O為正方形中心,∴∠OAB=∠OBA=45°,OA⊥CB,∴OA=OB=,∵OP=4,∴最小值為PA=4-;故答案為:4-.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),理解點(diǎn)到圖形的距離是解題的關(guān)鍵.4、【解析】【分析】由“HL”可證,可得,由“AAS”可證,可得,可得,再由勾股定理可求AP、FN、DH,即可求解.【詳解】如圖,連接AH,過點(diǎn)F作FN⊥CD于點(diǎn)N,F(xiàn)P⊥AD于點(diǎn)P,將△ABE繞著點(diǎn)A逆時針旋轉(zhuǎn)到△AFG的位置,,,四邊形ABCD是正方形,,,又,,,,,,,,,,F(xiàn)N⊥CD,F(xiàn)P⊥AD,,四邊形PDNF是矩形,,,,,,,,故答案為:.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì)、矩形的判定與性質(zhì),全等三角形的判定和性質(zhì)及勾股定理,熟練掌握知識點(diǎn)是解題的關(guān)鍵.5、【解析】【分析】先求出AB,再利用正方形的性質(zhì)確定C點(diǎn)坐標(biāo),由于2020=4×505,所以第2020次旋轉(zhuǎn)結(jié)束時,正方形ABCD回到初始位置,再旋轉(zhuǎn)2次,得出C的坐標(biāo)便是答案值.【詳解】∵A(4,3),B(4,-3),∴AB=3-(-3)=6,∵四邊形ABCD為正方形,∴BC=AB=6,∴C(10,-3),∵△OAB與正方形ABCD組成的圖形繞點(diǎn)O逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,∴每4次一個循環(huán),∵2022=4×505+2,∴第2020次旋轉(zhuǎn)結(jié)束時,正方形ABCD回到初始位置,從初始位置再旋轉(zhuǎn)兩次,就到第2022次旋轉(zhuǎn)到的位置,∴點(diǎn)C的坐標(biāo)為(-10,3).故答案為:(-10,3).【考點(diǎn)】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),正方形的性質(zhì),解答本題的關(guān)鍵是找出C點(diǎn)坐標(biāo)變化的規(guī)律.6、-1【解析】【分析】平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y),可據(jù)此求出m、n的值.【詳解】∵點(diǎn)與點(diǎn)關(guān)于坐標(biāo)系原點(diǎn)對稱,∴m-2n=-4,3m=-6解得:m=-2,n=1.故m+n=-2+1=-1.故答案為-1.【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)坐標(biāo)的關(guān)系,是需要識記的基本問題.7、【解析】【分析】根據(jù)題意構(gòu)造并證明,通過全等得到,再結(jié)合矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì),及可求解;【詳解】如圖,延長DH交EF于點(diǎn)k,∵H是的中點(diǎn)又則故答案為:【考點(diǎn)】本題主要考查了矩形的性質(zhì)、三角形的全等證明,掌握相關(guān)知識并結(jié)合旋轉(zhuǎn)的性質(zhì)正確構(gòu)造全等三角形是解題的關(guān)鍵.8、(2,1)【解析】【分析】觀察圖形,根據(jù)中心對稱的性質(zhì)即可解答.【詳解】∵點(diǎn)P(1,1),N(2,0),∴由圖形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵關(guān)于中心對稱的兩個圖形,對應(yīng)點(diǎn)的連線都經(jīng)過對稱中心,并且被對稱中心平分,∴對稱中心的坐標(biāo)為(2,1),故答案為(2,1).【考點(diǎn)】本題考查了中心對稱的性質(zhì):①關(guān)于中心對稱的兩個圖形能夠完全重合;②關(guān)于中心對稱的兩個圖形,對應(yīng)點(diǎn)的連線都經(jīng)過對稱中心,并且被對稱中心平分.9、【解析】【分析】延長AM到F,使AM=MF,連接BF,證△AEM≌△FBM,得AE=FB,∠AEM=∠FBM,△ABC繞著點(diǎn)A逆時針旋轉(zhuǎn)90°得到△ADE,得AB=AD,∠CAE=∠BAD=90°,再證AC=BF,∠CAD=∠ABF,得△BFA≌△ACD,即可得答案.【詳解】解:如上圖:延長AM到F,使AM=MF,∵M(jìn)是BE的中點(diǎn),∴BM=EM,∵∠AME=∠FMB,∴△AEM≌△FBM,∴AE=FB,∠AEM=∠FBM,∵△ABC繞著點(diǎn)A逆時針旋轉(zhuǎn)90°得到△ADE,∴AB=AD,AC=AE,∠CAE=∠BAD=90°,∴AC=BF,∠CAD=90°-∠EAD,∵∠ABF=∠ABM+∠FBM=∠ABM+∠AEM=180°-∠BAE=180°-(∠BAD+∠EAD)=180°-90°-∠EAD=90°-∠EAD,∴∠CAD=∠ABF,在△BFA和△ACD中,∴△BFA≌△ACD,∴FA=CD,∵AM=,∴CD=FA=2AM=2,故答案為:2.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定與性質(zhì),解題的關(guān)鍵是延長AM到F,使AM=MF,證△BFA≌△ACD.10、1【解析】【分析】根據(jù)勾股定理先求出BC邊長,再求出DC長,過點(diǎn)D作DM垂直AC,可證,即AF=DM,在等腰直角△DMC中可求DM,即可直接求解.【詳解】解:在Rt△ABC中,∠BAC=90°,AB=AC=4,根據(jù)勾股定理得,AB2+AC2=BC2,∴.又∵BD=3,∴DC=BC?BD=.過點(diǎn)D作DM⊥AC于點(diǎn)M,由旋轉(zhuǎn)的性質(zhì)得∠DAE=90°,AD=AE,∴∠DAC+∠EAF=90°.又∵∠DAC+∠ADM=90°,∴∠ADM=∠EAF.在Rt△ADM和Rt△EAF中,.∴(AAS),∴AF=DM.在等腰Rt△DMC中,由勾股定理得,DM2+MC2=DC2,∴DM=1,∴AF=DM=1.故答案為:1.【考點(diǎn)】本題主要考查等腰直角三角形,旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),證明△ADM≌△EAF是解答本題的關(guān)鍵.三、解答題1、(1)定理(兩邊和它們的夾角對應(yīng)相等的兩個三角形全等),全等三角形的對應(yīng)邊相等;(2)①仍存在,證明見解析;②;(3)或.【解析】【分析】(1)先根據(jù)等邊三角形的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理可證,然后根據(jù)全等三角形的性質(zhì)可得;(2)①先根據(jù)等邊三角形的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理可證,然后根據(jù)全等三角形的性質(zhì)可得;②先根據(jù)全等三角形的性質(zhì)可得,再根據(jù)三角形的外角性質(zhì)即可得;(3)先畫出圖形,過點(diǎn)作于點(diǎn),再根據(jù)直角三角形的定義可得,然后根據(jù)三角形的面積公式和旋轉(zhuǎn)角的定義即可得出答案.【詳解】解:(1)和都是等邊三角形,,,即,在和中,,,,故答案為:定理(兩邊和它們的夾角對應(yīng)相等的兩個三角形全等),全等三角形的對應(yīng)邊相等;(2)①仍存在,證明如下:和都是等邊三角形,,,即,在和中,,,;②,,,故答案為:;(3)如圖,過點(diǎn)作于點(diǎn),,當(dāng)且僅當(dāng),即點(diǎn)與點(diǎn)重合時,等號成立,,當(dāng)時,的面積最大,此時旋轉(zhuǎn)角或.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)、圖形的旋轉(zhuǎn)等知識點(diǎn),正確找出全等三角形是解題關(guān)鍵.2、(1)證明過程見解析;(2)BF=2-2【解析】【分析】(1)根據(jù)△ABC≌△ADE得出AE=AD,∠BAC=∠DAE,從而得出∠CAE=∠DAB,根據(jù)SAS判定定理得出三角形全等;(2)根據(jù)菱形的性質(zhì)得出∠DBA=∠BAC=45°,根據(jù)AB=AD得出△ABD是直角邊長為2的等腰直角三角形,從而得出BD=2,根據(jù)菱形的性質(zhì)得出AD=DF=FC=AC=AB=2,最后根據(jù)BF=BD-DF求出答案.【詳解】解析:(1)∵△ABC≌△ADE且AB=AC,∴AE=AD,AB=AC,∠BAC+∠BAE=∠DAE+∠BAE,

∴∠CAE=∠DAB,

∴△AEC≌△ADB.(3)∵四邊形ADFC是菱形且∠BAC=45°,

∴∠DBA=∠BAC=45°,

由(1)得AB=AD,∴∠DBA=∠BDA=45°,∴△ABD是直角邊長為2的等腰直角三角形,∴BD=2,又∵四邊形ADFC是菱形,∴AD=DF=FC=AC=AB=2,∴BF=BD-DF=2-2.【考點(diǎn)】考點(diǎn):(1)三角形全等的性質(zhì)與判定;(2)菱形的性質(zhì)3、(1)B;(2)(1)(3)(5);(3)C;(4)見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)對稱圖形的定義進(jìn)行判斷;(2)先分別求每一個圖形中的旋轉(zhuǎn)角,然后再進(jìn)行判斷;(3)根據(jù)旋轉(zhuǎn)對稱圖形的定義進(jìn)行判斷;(4)利用旋轉(zhuǎn)對稱圖形的定義進(jìn)行設(shè)計.【詳解】解:(1)矩形、正五邊形、菱形、正六邊形都是旋轉(zhuǎn)對稱圖形,但正五邊形不是中心對稱圖形,故選:B.(2)是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有(1)(3)(5).故答案為:(1)(3)(5).(3)①中心對稱圖形,旋轉(zhuǎn)180°一定會和本身重合,是旋轉(zhuǎn)對稱圖形;故命題①正確;②等腰三角形繞一個定點(diǎn)旋轉(zhuǎn)一定的角度α(0°<α≤180°)后,不一定能與自身重合,只有等邊三角形是旋轉(zhuǎn)對稱圖形,故②不正確;③圓具有旋轉(zhuǎn)不變性,繞圓心旋轉(zhuǎn)任意角度一定能與自身重合,是旋轉(zhuǎn)對稱圖形;故命題③正確;即命題中①③正確,故選:C.(4)圖形如圖所示:【考點(diǎn)】本題考查旋轉(zhuǎn)對稱圖形,中心對稱圖形等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.4、【猜想】CD=BC-CF,理由見解析;【探究】CF=BC+CD,理由見解析;【應(yīng)用】【解析】【分析】【猜想】利用SAS證明△BAD≌△CAF,得出BD=CF,然后根據(jù)線段的和差關(guān)系可得結(jié)論;【探究】利用SAS證明△BAD≌△CAF,得出BD=CF,然后根據(jù)線段的和差關(guān)系可得出結(jié)論;【應(yīng)用】利用SAS證明△BAD≌△CAF,得出BD=CF,∠ACF=∠ABD=135°,求出∠DCF=90°,在Rt△DCF中利用勾股定理求出DF,利用直角三角形的斜邊中線的性質(zhì)可得結(jié)論.【詳解】解:【猜想】CD=BC-CF,理由如下:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°=∠BAC,∴∠BAD=∠FAC,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵CD=BC-BD,∴CD=BC-CF:解:【探究】CF=BC+CD,理由如下:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠BAD=∠BAC+∠DAC,∴∠CAF=∠DAF+∠DAC,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;解:【應(yīng)用】∵∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠BAC=∠DAF,∴,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∴∠ACF=∠ABD=180°-45°=135°,,∴∠FCD=∠ACF-∠ACB=90°,∴△FCD為直角三角形,∵,∴,∴CD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論