版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在中,,cm,cm.是邊上的一個動點,連接,過點作于,連接,在點變化的過程中,線段的最小值是(
)A.1 B. C.2 D.2、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°3、如圖,已知⊙O的半徑為4,M是⊙O內一點,且OM=2,則過點M的所有弦中,弦長是整數(shù)的共有()A.1條 B.2條 C.3條 D.4條4、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數(shù)為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.05、已知⊙O的半徑等于3,圓心O到點P的距離為5,那么點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O外 C.點P在⊙O上 D.無法確定6、如圖,AC是⊙O的直徑,弦AB//CD,若∠BAC=32°,則∠AOD等于(
)A.64° B.48° C.32° D.76°7、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關系是(
)A.相交 B.相離 C.相切 D.無法判斷8、如圖,是的弦,點在過點的切線上,,交于點.若,則的度數(shù)等于(
)A. B. C. D.9、如圖,⊙O中,弦AB⊥CD,垂足為E,F(xiàn)為的中點,連接AF、BF、AC,AF交CD于M,過F作FH⊥AC,垂足為G,以下結論:①;②HC=BF:③MF=FC:④,其中成立的個數(shù)是()A.1個 B.2個 C.3個 D.4個10、如圖,點B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數(shù)是()A.50° B.60° C.80° D.100°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,是的直徑,弦于點,且,則的半徑為__________.2、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長為______.3、如圖,在⊙O中,是⊙O的直徑,,點是點關于的對稱點,是上的一動點,下列結論:①;②;③;④的最小值是10.上述結論中正確的個數(shù)是_________.4、如圖所示的扇形中,,C為上一點,,連接,過C作的垂線交于點D,則圖中陰影部分的面積為_______.5、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應假設:______.6、如圖,正方形ABCD,邊長為4,點P和點Q在正方形的邊上運動,且PQ=4,若點P從點B出發(fā)沿B→C→D→A的路線向點A運動,到點A停止運動;點Q從點A出發(fā),沿A→B→C→D的路線向點D運動,到達點D停止運動.它們同時出發(fā),且運動速度相同,則在運動過程中PQ的中點O所經過的路徑長為_____.7、如圖,在的方格紙中,每個小方格都是邊長為1的正方形,其中A、B、C為格點,作的外接圓,則的長等于_____.8、如圖是四個全等的正八邊形和一個正方形拼成的圖案,已知正方形的面積為4,則一個正八邊形的面積為____.9、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.10、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.三、解答題(5小題,每小題6分,共計30分)1、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.2、在下列正多邊形中,是中心,定義:為相應正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2,是正方形的基本三角形;如圖3,為正邊形…的基本三角形.將基本繞點逆時針旋轉角度得.(1)若線段與線段相交點,則:圖1中的取值范圍是________;圖3中的取值范圍是________;(2)在圖1中,求證(3)在圖2中,正方形邊長為4,,邊上的一點旋轉后的對應點為,若有最小值時,求出該最小值及此時的長度;(4)如圖3,當時,直接寫出的值.3、拋物線y=ax2+2x+c與x軸交于A(﹣1,0)、B兩點,與y軸交于點C(0,3),點D(m,3)在拋物線上.(1)求拋物線的解析式;(2)如圖1,連接BC、BD,點P在對稱軸左側的拋物線上,若∠PBC=∠DBC,求點P的坐標;(3)如圖2,點Q為第四象限拋物線上一點,經過C、D、Q三點作⊙M,⊙M的弦QF∥y軸,求證:點F在定直線上.4、如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點O,OC=1,以點O為圓心OC為半徑作半圓.(1)求證:AB為⊙O的切線;(2)如果tan∠CAO=,求cosB的值.5、如圖,在中,,以為直徑的⊙O與相交于點,過點作⊙O的切線交于點.(1)求證:;(2)若⊙O的半徑為,,求的長.-參考答案-一、單選題1、A【解析】【分析】由∠AEC=90°知,點E在以AC為直徑的⊙M的上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點、可含點,最短時,即為連接與的交點(圖中點點),在中,,,則.,長度的最小值,故選:.【考點】本題主要考查了勾股定理,圓周角定理,三角形的三邊關系等知識點,難度偏大,解題時,注意輔助線的作法.2、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內接四邊形的性質求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【考點】本題考查了圓周角定理、圓內接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.3、C【解析】【分析】過點M作AB⊥OM交⊙O于點A、B,根據(jù)勾股定理求出AM,根據(jù)垂徑定理求出AB,進而得到答案.【詳解】解:過點M作AB⊥OM交⊙O于點A、B,連接OA,則AM=BM=AB,在Rt△AOM中,AM===,∴AB=2AM=,則≤過點M的所有弦≤8,則弦長是整數(shù)的共有長度為7的兩條,長度為8的一條,共三條,故選:C.【考點】本題考查了垂徑定理,勾股定理,掌握垂直于選的直徑平分這條弦,并平分弦所對的兩條弧是解題關鍵.4、D【解析】【分析】根據(jù)直線和圓的位置關系判斷方法,可得結論.【詳解】∵直線m與⊙O公共點的個數(shù)為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關系,掌握直線和圓的位置關系判斷方法:設⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.5、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點P在⊙O外.故選:B.【考點】本題考查了點與圓的位置關系,熟練掌握d,r法則是解題的關鍵.6、A【解析】【分析】由AB//CD,∠BAC=32°,根據(jù)平行線的性質,即可求得∠ACD的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠AOD的度數(shù).【詳解】解:∵弦AB//CD,∠BAC=32°,∴∠ACD=∠BAD=32°,∴∠AOD=2∠ACD=2×32°=64°.故選:A【考點】此題考查了圓周角定理與平行線的性質.解題的關鍵是注意掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.7、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關系為相交,故選A.【考點】本題主要考查直線與圓的位置關系,熟練掌握直線與圓的位置關系是解題的關鍵.8、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點C在過點B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點】本題考查的是圓切線的運用,熟練掌握運算方法是關鍵.9、C【解析】【分析】根據(jù)弧,弦,圓心角之間的關系,圓周角定理以及三角形內角和定理一一判斷即可.【詳解】解:∵F為的中點,∴,故①正確,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③錯誤,∵AB⊥CD,F(xiàn)H⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴,∴HC=BF,故②正確,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴=180°,∴=180°,∴,故④正確,故選:C.【點評】本題考查圓心角,弧,弦之間的關系,三角形內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考選擇題中的壓軸題.10、D【解析】【分析】首先圓上取一點A,連接AB,AD,根據(jù)圓的內接四邊形的性質,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數(shù),再根據(jù)圓周角的性質,即可求得答案.【詳解】圓上取一點A,連接AB,AD,∵點A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故選D.【考點】此題考查了圓周角的性質與圓的內接四邊形的性質.此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用,注意輔助線的作法.二、填空題1、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點】本題考查了垂徑定理、勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關鍵.2、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點】本題考查的是垂徑定理、勾股定理等知識,熟練掌握垂徑定理,由勾股定理求出CE的長是解題的關鍵.3、3【解析】【分析】①根據(jù)點是點關于的對稱點可知,進而可得;②根據(jù)一條弧所對的圓周角等于圓心角的一半即可得結論;③根據(jù)等弧對等角,可知只有當和重合時,,;④作點關于的對稱點,連接,DF,此時的值最短,等于的長,然后證明DF是的直徑即可得到結論.【詳解】解:,點是點關于的對稱點,,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當和重合時,,∴只有和重合時,,③錯誤;作關于的對稱點,連接,交于點,連接交于點,此時的值最短,等于的長.連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當點與點重合時,的值最小,最小值是10,∴④正確.故答案為:3.【考點】本題考查了圓的綜合知識,涉及圓周角、圓心角、弧、弦的關系、最短距離的確定等,掌握圓的基本性質并靈活運用是解題關鍵.4、【解析】【分析】先根據(jù)題目條件計算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計算公式進行計算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點】本題考查了陰影面積的計算,熟知不規(guī)則陰影面積的計算方法是解題的關鍵.5、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點進行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設這兩條直線不平行,則兩條直線有交點,因為過直線外一點有且只有一條直線與已知直線平行因此,兩條直線有交點時,它們不可能同時與第三條直線平行因此假設與結論矛盾.故假設不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點】本題主要考查了反證法,在解題時要根據(jù)反證法的特點進行證明是本題的關鍵.6、【解析】【分析】【詳解】解:畫出點O運動的軌跡,如圖虛線部分,則點P從B到A的運動過程中,PQ的中點O所經過的路線長等于3π,故答案為:3π.7、【解析】【分析】由AB、BC、AC長可推導出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點】本題考查了弧長的計算以及圓周角定理,解題關鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.8、【解析】【分析】根據(jù)正方形的性質得到AB=2,根據(jù)由正八邊形的特點求出∠AOB的度數(shù),過點B作BD⊥OA于點D,根據(jù)勾股定理求出BD的長,由三角形的面積公式求出△AOB的面積,進而可得出結論.【詳解】解:設正八邊形的中心為O,連接OA,OB,如圖所示,∵正方形的面積為4,∴AB=2,∵AB是正八邊形的一條邊,∴∠AOB==45°.過點B作BD⊥OA于點D,設BD=x,則OD=x,OB=OA=x,∴AD=x-x,在Rt△ADB中,BD2+AD2=AB2,即x2+(x-x)2=22,解得x2=2+,∴S△AOB=OA?BD=×x2=+1,∴S正八邊形=8S△AOB=8×(+1)=8+8,故答案為:8+8.【考點】本題考查的是正多邊形和圓,正方形的性質,三角形面積的計算,根據(jù)題意畫出圖形,利用數(shù)形結合求解是解答此題的關鍵.9、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關知識點,本題的關鍵是求出∠COB=60°.10、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關鍵在于熟練掌握其知識點.三、解答題1、詳見解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對應的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對應的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對的圓心角相等)2、(1),;(2)見解析;(3)最小值:,此時=2+;(4)【解析】【分析】(1)根據(jù)正多邊形的中心角的定義即可解決問題;(2)如圖1中,作OE⊥BC于E,OF⊥于F,連接.利用全等三角形的性質分別證明:BE=,即可解決問題;(3)如圖2中,作點O關于BC的對稱點E,連接OE交BC于K,連接交BC于點,連接,此時的值最小,即有最小值.(4)利用等腰三角形三線合一的性質即可解決問題;【詳解】(1)由題意圖1中,∵△ABC是等邊三角形,O是中心,∴∠AOB=120°∴∠α的取值范圍是:0°<α≤120°,圖3中,∵ABCDEF…是正n邊形,O是中心,∴∠BOC=,∴∠α的取值范圍是:0°<α≤,故答案為:0°<α≤120°,0°<α≤.(2)如圖1中,作OE⊥BC于E,OF⊥于F,連接.∵∠OEB=∠OF=90°,根據(jù)題意,O是中心,∴OB=OC,∴∠OBE=∠,∴△OBE≌△OF(AAS),∴OE=OF,BE=F∵,∴Rt△≌Rt△(HL),∴,∴.(3)如圖2中,作點O關于BC的對稱點E,連接OE交BC于K,連接交BC于點,連接,此時的值最?。摺希?35°,∠BOC=90°,∴∠OCB=∠=45°,∴∥BC,∵OK⊥BC,OB=OC,∴BK=CK=2,OB=2,∵∥,OK=KE,∴,∴==,∴=2+,在Rt△中,=.∵,∴有最小值,最小值為,此時=2+.(4)如圖3中,∵ABCDEF…是正n邊形,O是中心,∴∠BOC=,∵OC⊥,,∴∠=∠=∠BOC=,∴α=.【考點】本題屬于多邊形綜合題,考查了正多邊形的性質,旋轉變換,全等三角形的判定和性質,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.3、(1)(2)P(,)(3)證明見解析【解析】【分析】(1)把A、C坐標代入可得關于a、c的二元一次方程組,解方程組求出a、c的值即可得答案;(2)如圖,設BP與y軸交于點E,直線解析式為,根據(jù)(1)中解析式可知D、B兩點坐標,可得CD//AB,利用ASA可證明△DCB≌△ECB,可得CE=CD,即可得出點E坐標,利用待定系數(shù)法可得直線BP的解析式,聯(lián)立直線BP與拋物線解析式求出交點坐標即可得答案;(3)如圖,連接MD,MF,設Q(m,-m2+2m+3),F(xiàn)(m,t),根據(jù)CD、QF為⊙M的弦可得圓心M是CD、QF的垂直平分線的交點,即可表示出點M坐標,根據(jù)MD=MF,利用兩點間距離公式可得()2+(2-1)2=(m-1)2+()2,整理可得t=2,即可得答案.(1)∵A(﹣1,0)、C(0,3)在拋物線y=ax2+2x+c圖象上,∴,解得:,∴拋物線解析式為:.(2)如圖,設BP與y軸交于點E,直線解析式為,∵點D(m,3)在拋物線上,∴,解得:,(與點C重合,舍去),∴D(2,3),∴CD//AB,CD=2,當y=0時,,解得:,,
∴B(3,0),∴OB=OC,∴∠OCB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年咸陽市渭城區(qū)就業(yè)見習計劃招聘備考題庫有答案詳解
- 人工影響天氣特種作業(yè)操作員安全意識強化考核試卷含答案
- 景泰藍制胎工安全生產規(guī)范強化考核試卷含答案
- 老年社區(qū)精準健康管理:家庭醫(yī)生簽約服務
- 老年疼痛物理因子治療優(yōu)化方案
- 老年甲狀腺功能亢進癥合并心血管疾病綜合管理方案
- 企業(yè)安全教育與應急處理制度
- 數(shù)據(jù)分析工具介紹及應用場景解析
- 兒科護理新技術應用
- 2026年及未來5年市場數(shù)據(jù)中國海流能行業(yè)市場競爭格局及發(fā)展趨勢預測報告
- GB/T 4937.34-2024半導體器件機械和氣候試驗方法第34部分:功率循環(huán)
- 人教版小學數(shù)學一年級下冊全冊同步練習含答案
- 加油站防投毒應急處理預案
- 閉合導線計算(自動計算表)附帶注釋及教程
- 項目1 變壓器的運行與應用《電機與電氣控制技術》教學課件
- 網店運營中職PPT完整全套教學課件
- 北師大版八年級數(shù)學下冊課件【全冊】
- 關于提高護士輸液時PDA的掃描率的品管圈PPT
- 針入度指數(shù)計算表公式和程序
- XGDT-06型脈動真空滅菌柜4#性能確認方案
- 繩正法曲線撥道量計算器
評論
0/150
提交評論