版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.如圖,點(diǎn)A(1,n),B(n,1),我們定義:將點(diǎn)A向下平移1個單位,再向右平移1個單位,同時點(diǎn)B向上平移1個單位,再向左平移1個單位稱為一次操作,此時平移后的兩點(diǎn)記為A1,B1,t次操作后兩點(diǎn)記為At,Bt.(1)直接寫出A1,B1,At,Bt的坐標(biāo)(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過n次操作,點(diǎn)A,點(diǎn)B位置互換B.經(jīng)過(n﹣1)次操作,點(diǎn)A,點(diǎn)B位置互換C.經(jīng)過2n次操作,點(diǎn)A,點(diǎn)B位置互換D.不管幾次操作,點(diǎn)A,點(diǎn)B位置都不可能互換(3)t為何值時,At,B兩點(diǎn)位置距離最近?解析:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律求解可得答案;(2)由1+t=n時t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對應(yīng)的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當(dāng)1+t=n時,t=n﹣1.此時n﹣t=n﹣(n﹣1)=1,故選:B;(3)當(dāng)n為奇數(shù)時:1+t=n﹣t解得t=,當(dāng)n為偶數(shù)時:1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點(diǎn)睛】本題主要考查坐標(biāo)與圖形變化—平移,解題的關(guān)鍵是掌握點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律:橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減.2.如圖,A點(diǎn)的坐標(biāo)為(0,3),B點(diǎn)的坐標(biāo)為(﹣3,0),D為x軸上的一個動點(diǎn)且不與B,O重合,將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點(diǎn)M.(1)如圖,當(dāng)點(diǎn)D在線段OB的延長線上時,①若D點(diǎn)的坐標(biāo)為(﹣5,0),求點(diǎn)E的坐標(biāo).②求證:M為BE的中點(diǎn).③探究:若在點(diǎn)D運(yùn)動的過程中,的值是否是定值?如果是,請求出這個定值;如果不是,請說明理由.(2)請直接寫出三條線段AO,DO,AM之間的數(shù)量關(guān)系(不需要說明理由).解析:(1)①E(3,﹣2)②見解析;③,理由見解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①過點(diǎn)E作EH⊥y軸于H.證明△DOA≌△AHE(AAS)可得結(jié)論.②證明△BOM≌△EHM(AAS)可得結(jié)論.③是定值,證明△BOM≌△EHM可得結(jié)論.(2)根據(jù)點(diǎn)D在點(diǎn)B左側(cè)和右側(cè)分類討論,分別畫出對應(yīng)的圖形,根據(jù)全等三角形的判定及性質(zhì)即可分別求出結(jié)論.【詳解】解:(1)①過點(diǎn)E作EH⊥y軸于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y軸,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③結(jié)論:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)結(jié)論:OA+OD=2AM或OA﹣OD=2AM.理由:當(dāng)點(diǎn)D在點(diǎn)B左側(cè)時,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時,過點(diǎn)E作EH⊥y軸于點(diǎn)H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.綜上:OA+OD=2AM或OA﹣OD=2AM.【點(diǎn)睛】此題考查的是全等三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)和平面直角坐標(biāo)系,掌握全等三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)和點(diǎn)的坐標(biāo)與線段長度的關(guān)系是解決此題的關(guān)鍵.3.如圖:在四邊形ABCD中,A、B、C、D四個點(diǎn)的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點(diǎn)的坐標(biāo).(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo).(3)求四邊形ABCD的面積.解析:(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應(yīng)點(diǎn)的坐標(biāo)進(jìn)而得出答案;(2)利用平移規(guī)律進(jìn)而得出對應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律:向上平移1個單位,縱坐標(biāo)加1;向左平移2個單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進(jìn)而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點(diǎn)睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對應(yīng)點(diǎn)位置是解題關(guān)鍵.4.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).(1)直接寫出點(diǎn)E的坐標(biāo);(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個單位長度,運(yùn)動時間為t秒,回答下列問題:①當(dāng)t=秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);③當(dāng)點(diǎn)P運(yùn)動到CD上時,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.解析:(1)(-2,0);(2)①t=2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,z=x+y.【分析】(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;(2)①由點(diǎn)C的坐標(biāo)為(-3,2).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)根據(jù)題意,可得三角形OAB沿x軸負(fù)方向平移3個單位得到三角形DEC,∵點(diǎn)A的坐標(biāo)是(1,0),∴點(diǎn)E的坐標(biāo)是(-2,0);故答案為:(-2,0);(2)①∵點(diǎn)C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點(diǎn)P在線段BC上,∴PB=CD,即t=2;∴當(dāng)t=2秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);故答案為:2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),坐標(biāo)與圖形的變化-平移,平行線的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.5.在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,過點(diǎn)作直線軸,垂足為,交線段于點(diǎn).(1)如圖1,過點(diǎn)作,垂足為,連接.①填空:的面積為______;②點(diǎn)為直線上一動點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo);(2)如圖2,點(diǎn)為線段延長線上一點(diǎn),連接,,線段交于點(diǎn),若,請直接寫出點(diǎn)的坐標(biāo)為______.解析:(1)①6;②的坐標(biāo)為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點(diǎn)B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點(diǎn)的坐標(biāo)為,分兩種情況:點(diǎn)在點(diǎn)上方,連接,得=++=8,點(diǎn)在點(diǎn)的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點(diǎn)B到AE的距離為OA,∵點(diǎn)A(0,4),點(diǎn)C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點(diǎn)的坐標(biāo)為.(i)∵點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,∴.∵,∴.∴點(diǎn)在點(diǎn)上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(ii)點(diǎn)在點(diǎn)的下方,連接(如圖2).∵.∴.∴點(diǎn)在點(diǎn)的下方,根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點(diǎn)Q的坐標(biāo)為(3,4),故答案為:(3,4).【點(diǎn)睛】本題是三角形綜合題,主要考查了圖形與點(diǎn)的坐標(biāo)、矩形的判定與性質(zhì)、三角形面積的計算等知識,熟練掌握圖形與點(diǎn)的坐標(biāo),靈活運(yùn)用割補(bǔ)法表示三角形面積列出方程是解題的關(guān)鍵.6.如圖所示,A(1,0),點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,點(diǎn)C的坐標(biāo)為(﹣3,2).(1)直接寫出點(diǎn)E的坐標(biāo);(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)O出發(fā),沿OB→BC→CD移動,若點(diǎn)P的速度為每秒1個單位長度,運(yùn)動時間為t秒,請解決以下問題;①當(dāng)t為多少秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②當(dāng)t為多少秒時,三角形PEA的面積為2,求此時P的坐標(biāo)解析:(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據(jù)BC=AE=3,OA=1,推出OE=2,可得結(jié)論.(2)①判斷出PB=CD,即可得出結(jié)論;②根據(jù)△PEA的面積以及AE求出點(diǎn)P到AE的距離,結(jié)合點(diǎn)P的路線可得坐標(biāo).【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點(diǎn)C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點(diǎn)P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當(dāng)t=4秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設(shè)點(diǎn)P到AE的距離為h∴,∴h=,即點(diǎn)P到AE的距離為,∴點(diǎn)P的坐標(biāo)為(0,)或(-3,).【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,三角形的面積等知識,解本題的關(guān)鍵是由線段和部分點(diǎn)的坐標(biāo),得出其它點(diǎn)的坐標(biāo).7.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.解析:(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點(diǎn)作,過點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點(diǎn)作,過點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.8.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.9.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).解析:(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.10.汛期即將來臨,防汛指揮部在某水域一危險地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動的速度是/秒,燈射出的光束轉(zhuǎn)動的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時轉(zhuǎn)動,在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動30秒,燈射出的光束才開始轉(zhuǎn)動,在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個時間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動時間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動秒,兩燈的光束互相平行.依題意得①當(dāng)時,兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當(dāng)時,兩光束平行,所以兩河岸平行,所以所以,,解得;③當(dāng)時,圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時,兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對應(yīng)角列出方程是解題的關(guān)鍵.11.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.12.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時,①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點(diǎn)作AB的平行線)(2)點(diǎn)M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關(guān)系.(注:此題說理時不能使用沒有學(xué)過的定理)解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點(diǎn)N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,同位角相等等知識是解題的關(guān)鍵.13.如圖1,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在,之間,且滿足.(1)證明:;(2)如圖2,若,,點(diǎn)在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點(diǎn)在線段上,連接,若,則______.解析:(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設(shè)∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設(shè),則.,,,,.即.(3)作,則如圖,設(shè),則.,,,,,故答案為.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.14.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動點(diǎn).(1)如圖1所示時,試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動點(diǎn),因此需要對點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時,,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時,;當(dāng)點(diǎn)在的右側(cè)時,可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;過點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時,,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識點(diǎn),作輔助線后能求出各個角的度數(shù),是解此題的關(guān)鍵.15.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限內(nèi)一點(diǎn),CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點(diǎn)C的坐標(biāo).(2)如圖2,設(shè)D為線段OB上一動點(diǎn),當(dāng)AD⊥AC時,∠ODA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑專業(yè)技術(shù)人員職稱考試題庫及答案
- 電氣檢修工考試題及答案
- 華能國際電力股份有限公司校園招聘模擬試題附帶答案詳解完整答案
- 造價員考試《土建工程》復(fù)習(xí)題及答案
- 區(qū)2024年心理咨詢師基礎(chǔ)知識考試題庫及完整答案(奪冠)
- 2025年大學(xué)(家政學(xué))家庭服務(wù)技術(shù)階段測試試題及答案
- 倉儲公司貨物運(yùn)輸費(fèi)用結(jié)算管理制度
- 護(hù)士長管理能力測試試題及答案
- 2025押題版銀行《金融產(chǎn)品創(chuàng)新設(shè)計崗》用戶需求調(diào)研真題卷
- 承包商入廠培訓(xùn)教育考試題及答案
- 物業(yè)管理經(jīng)理培訓(xùn)課件
- DB3301∕T 0165-2018 城市照明設(shè)施養(yǎng)護(hù)維修服務(wù)標(biāo)準(zhǔn)
- 百人公司年會策劃方案
- 青少年法律知識競賽試題及答案
- 鏈?zhǔn)捷斔蜋C(jī)傳動系統(tǒng)設(shè)計
- 加班工時管控改善方案
- 2025分布式數(shù)據(jù)庫 OceanBase 架構(gòu)演進(jìn)與業(yè)務(wù)場景實(shí)踐
- 2025年軍工企業(yè)招聘考試面試流程與注意事項(xiàng)詳解
- 《昆蟲記》中的昆蟲圖片
- 鐵路施工安全檢查日志范本
- 五層外架施工方案
評論
0/150
提交評論