版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第1講空間幾何體專題四
立體幾何與空間向量考情分析空間幾何體的結(jié)構(gòu)特征是立體幾何的基礎(chǔ),空間幾何體的表面積和體積是高考的重點(diǎn)與熱點(diǎn),多以選擇題、填空題的形式考查,難度中等或偏上.考點(diǎn)一三視圖與直觀圖考點(diǎn)二表面積與體積考點(diǎn)三多面體與球?qū)n}強(qiáng)化練內(nèi)容索引三視圖與直觀圖
考點(diǎn)一1.一個(gè)物體的三視圖的排列規(guī)則俯視圖放在正視圖的下面,長(zhǎng)度與正視圖的長(zhǎng)度一樣,側(cè)視圖放在正視圖的右面,高度與正視圖的高度一樣,寬度與俯視圖的寬度一樣.即“長(zhǎng)對(duì)正、高平齊、寬相等”.2.由三視圖還原幾何體的步驟一般先依據(jù)俯視圖確定底面,再利用正視圖與側(cè)視圖確定幾何體.核心提煉例1(1)(2022·全國(guó)甲卷)如圖,網(wǎng)格紙上繪制的是一個(gè)多面體的三視圖,網(wǎng)格小正方形的邊長(zhǎng)為1,則該多面體的體積為A.8 B.12C.16 D.20√三視圖對(duì)應(yīng)的幾何體是放倒的直四棱柱,如圖,直四棱柱的高為2,底面是上底為2,下底為4,高為2的梯形,(2)如圖,已知用斜二測(cè)畫(huà)法畫(huà)出的△ABC的直觀圖是邊長(zhǎng)為a的正三角形,則原△ABC的面積為_(kāi)_______.如圖,過(guò)點(diǎn)C′作C′M′∥y′軸,交x′軸于點(diǎn)M′,過(guò)點(diǎn)C′作C′D′⊥x′軸,交x′軸于點(diǎn)D′,由三視圖還原直觀圖的方法(1)注意圖中實(shí)、虛線,分別是原幾何體中的可視線與被遮擋線.(2)想象原形,并畫(huà)出草圖后進(jìn)行三視圖還原,把握三視圖和幾何體之間的關(guān)系,與所給三視圖比較,通過(guò)調(diào)整,準(zhǔn)確畫(huà)出原幾何體.(3)由三視圖還原直觀圖時(shí),往往采用削體法,選定一個(gè)視圖,比如俯視圖,然后逐步削切正方體等幾何載體.規(guī)律方法
(1)(2021·全國(guó)乙卷)以圖①為正視圖,在圖②③④⑤中選兩個(gè)分別作為側(cè)視圖和俯視圖,組成某個(gè)三棱錐的三視圖,則所選側(cè)視圖和俯視圖的編號(hào)依次為_(kāi)___________________________(寫(xiě)出符合要求的一組答案即可).跟蹤演練1③④(答案不唯一,②⑤也可)根據(jù)“長(zhǎng)對(duì)正、高平齊、寬相等”及圖中數(shù)據(jù),可知圖②③只能是側(cè)視圖,圖④⑤只能是俯視圖,則組成某個(gè)三棱錐的三視圖,所選側(cè)視圖和俯視圖的編號(hào)依次是③④或②⑤.若是③④,則原幾何體如圖1所示;若是②⑤,則原幾何體如圖2所示.(2)(2022·運(yùn)城模擬)某幾何體的正視圖和側(cè)視圖如圖1所示,它的俯視圖的直觀圖是△A′B′C′,如圖2所示,其中O′A′=O′B′,
O′C′=
,則該幾何體的表面積為√由俯視圖的直觀圖,可得該幾何體的底面是邊長(zhǎng)為4的正三角形,由正視圖和側(cè)視圖知該幾何體是三棱錐,如圖所示,其中SA⊥平面ABC,SA=6,△SAB,△SAC
都是直角三角形,表面積與體積
考點(diǎn)二1.旋轉(zhuǎn)體的側(cè)面積和表面積(1)S圓柱側(cè)=2πrl,S圓柱表=2πr(r+l)(r為底面半徑,l為母線長(zhǎng)).(2)S圓錐側(cè)=πrl,S圓錐表=πr(r+l)(r為底面半徑,l為母線長(zhǎng)).(3)S球表=4πR2(R為球的半徑).2.空間幾何體的體積公式(1)V柱=Sh(S為底面面積,h為高).核心提煉
(1)(2022·凌源模擬)五脊殿是宋代傳統(tǒng)建筑中的一種屋頂形式.如圖所示,其屋頂上有一條正脊和四條垂脊,可近似看作一個(gè)底面為矩形的五面體.若某一五脊殿屋頂?shù)恼归L(zhǎng)4米,底面矩形的長(zhǎng)為6米,寬為4米,正脊到底面矩形的距離為2米,則該五脊殿屋頂?shù)捏w積的估計(jì)值為例2√如圖所示,將屋頂分割為一個(gè)三棱柱和兩個(gè)相同的四棱錐,三棱柱的底面是邊長(zhǎng)為4,高為2的等腰三角形,三棱柱的高為4.四棱錐的底面是長(zhǎng)為4,寬為1的矩形,其高為2,√方法一因?yàn)榧?、乙兩個(gè)圓錐的母線長(zhǎng)相等,可知甲、乙兩個(gè)圓錐側(cè)面展開(kāi)圖的圓心角之比是2∶1.不妨設(shè)兩個(gè)圓錐的母線長(zhǎng)為l=3,甲、乙兩個(gè)圓錐的底面半徑分別為r1,r2,高分別為h1,h2,則由題意知,兩個(gè)圓錐的側(cè)面展開(kāi)圖剛好可以拼成一個(gè)周長(zhǎng)為6π的圓,所以2πr1=4π,2πr2=2π,得r1=2,r2=1.由勾股定理得,方法二
設(shè)兩圓錐的母線長(zhǎng)為l,甲、乙兩圓錐的底面半徑分別為r1,r2,高分別為h1,h2,側(cè)面展開(kāi)圖的圓心角分別為n1,n2,由題意知n1+n2=2π,空間幾何體的表面積與體積的求法(1)公式法:對(duì)于規(guī)則的幾何體直接利用公式進(jìn)行求解.(2)割補(bǔ)法:把不規(guī)則的圖形分割成規(guī)則的圖形,或把不規(guī)則的幾何體補(bǔ)成規(guī)則的幾何體,不熟悉的幾何體補(bǔ)成熟悉的幾何體.(3)等體積法:選擇合適的底面來(lái)求體積.規(guī)律方法
(1)(2022·錦州質(zhì)檢)2022年北京冬奧會(huì)的成功舉辦使北京成為奧運(yùn)史上第一座“雙奧之城”.其中2008年北京奧運(yùn)會(huì)的標(biāo)志性場(chǎng)館之一“水立方”搖身一變成為了“冰立方”.“冰立方”在冬奧會(huì)期間承接了冰壺和輪椅冰壺等比賽項(xiàng)目.“水立方”的設(shè)計(jì)靈感來(lái)自于威爾·弗蘭泡沫,威爾·弗蘭泡沫是對(duì)開(kāi)爾文胞體的改進(jìn),開(kāi)爾文胞體是一種多面體,它由正六邊形和正方形圍成(其中每一個(gè)頂點(diǎn)處有一個(gè)正方形和兩個(gè)正六邊形),已知該多面體共有24個(gè)頂點(diǎn),且棱長(zhǎng)為2,則該多面體的表面積是跟蹤演練2√邊長(zhǎng)為2的正方形的面積為2×2=4,又正方形有4個(gè)頂點(diǎn),正六邊形有6個(gè)頂點(diǎn),該多面體共有24個(gè)頂點(diǎn),所以最多有6個(gè)正方形,最少有4個(gè)正六邊形,1個(gè)正六邊形與3個(gè)正方形相連,所以該多面體有6個(gè)正方形,正六邊形有6×4÷3=8(個(gè)).(2)(2022·連云港模擬)如圖是一個(gè)圓臺(tái)的側(cè)面展開(kāi)圖,若兩個(gè)半圓的半徑分別是1和2,則該圓臺(tái)的體積是√如圖,設(shè)上底面的半徑為r,下底面的半徑為R,高為h,母線長(zhǎng)為l,則2πr=π·1,2πR=π·2,l=2-1=1,下底面面積S=π·12=π,多面體與球
考點(diǎn)三求空間多面體的外接球半徑的常用方法(1)補(bǔ)形法:側(cè)面為直角三角形,或正四面體,或?qū)饩嗟鹊哪P?,可以還原到正方體或長(zhǎng)方體中去求解;(2)定義法:到各個(gè)頂點(diǎn)距離均相等的點(diǎn)為外接球的球心,借助有特殊性底面的外接圓圓心,找其垂線,則球心一定在垂線上,再根據(jù)到其他頂點(diǎn)距離也是半徑,列關(guān)系式求解即可.核心提煉例3(1)(2022·煙臺(tái)模擬)如圖,三棱錐V-ABC中,VA⊥底面ABC,∠BAC=90°,AB=AC=VA=2,則該三棱錐的內(nèi)切球和外接球的半徑之比為√因?yàn)閂A⊥底面ABC,AB,AC?底面ABC,所以VA⊥AB,VA⊥AC,又因?yàn)椤螧AC=90°,所以AB⊥AC,而AB=AC=VA=2,所以三條互相垂直且共頂點(diǎn)的棱,可以看成正方體中共頂點(diǎn)的長(zhǎng)、寬、高,因此該三棱錐外接球的半徑設(shè)該三棱錐的內(nèi)切球的半徑為r,因?yàn)椤螧AC=90°,因?yàn)閂A⊥AB,VA⊥AC,AB=AC=VA=2,由三棱錐的體積公式可得,(2)(2022·全國(guó)乙卷)已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為√該四棱錐的體積最大即以底面截球的圓面和頂點(diǎn)O組成的圓錐體積最大.設(shè)圓錐的高為h(0<h<1),底面半徑為r,(1)求錐體的外接球問(wèn)題的一般方法是補(bǔ)形法,把錐體補(bǔ)成正方體、長(zhǎng)方體等求解.(2)求錐體的內(nèi)切球問(wèn)題的一般方法是利用等體積法求半徑.規(guī)律方法
(1)(2022·新高考全國(guó)Ⅱ)已知正三棱臺(tái)的高為1,上、下底面邊長(zhǎng)分別為
,其頂點(diǎn)都在同一球面上,則該球的表面積為A.100π B.128πC.144π D.192π跟蹤演練3√設(shè)該棱臺(tái)上、下底面的外接圓的圓心分別為O1,O2,連接O1O2,則O1O2=1,其外接球的球心O在直線O1O2上.所以R2=25,所以該球的表面積為4πR2=100π.綜上,該球的表面積為100π.(2)(2022·衡水中學(xué)調(diào)研)將兩個(gè)一模一樣的正三棱錐共底面倒扣在一起,已知正三棱錐的側(cè)棱長(zhǎng)為2,若該組合體有外接球,則正三棱錐的底面邊長(zhǎng)為_(kāi)_______,該組合體的外接球的體積為_(kāi)_______.如圖,連接PA交底面BCD于點(diǎn)O,則點(diǎn)O就是該組合體的外接球的球心.設(shè)三棱錐的底面邊長(zhǎng)為a,專題強(qiáng)化練
一、選擇題1.(2022·唐山模擬)圓柱的底面直徑與高都等于球的直徑,則球的表面積與圓柱的側(cè)面積的比值為A.1∶1 B.1∶2C.2∶1 D.2∶312345678910111213141516設(shè)球的半徑為r,依題意知圓柱的底面半徑也是r,高是2r,圓柱的側(cè)面積為2πr·2r=4πr2,球的表面積為4πr2,其比例為1∶1.√12345678910111213141516√123456789101112131415163.(2022·福州模擬)已知一個(gè)直三棱柱的高為2,如圖,其底面△ABC水平放置的直觀圖(斜二測(cè)畫(huà)法)為△A′B′C′,其中O′A′=O′B′=O′C′=1,則此三棱柱的表面積為√12345678910111213141516由斜二測(cè)畫(huà)法的“三變”“三不變”可得底面△ABC的原圖形如圖所示,123456789101112131415164.(2021·新高考全國(guó)Ⅱ)正四棱臺(tái)的上、下底面的邊長(zhǎng)分別為2,4,側(cè)棱長(zhǎng)為2,則其體積為√12345678910111213141516作出圖形,連接該正四棱臺(tái)上、下底面的中心,如圖,因?yàn)樵撍睦馀_(tái)上、下底面的邊長(zhǎng)分別為2,4,側(cè)棱長(zhǎng)為2,下底面面積S1=16,上底面面積S2=4,12345678910111213141516√12345678910111213141516畫(huà)出球與垃圾簍組合體的軸截面圖,如圖所示.設(shè)籃球的半徑為r,則r2=10a2+(12a)2=154a2.故該籃球的表面積為4πr2=616πa2.6.(2022·西北工業(yè)大學(xué)附屬中學(xué)模擬)如圖1,在正方體ABCD-A1B1C1D1中,點(diǎn)P在正方形A1B1C1D1內(nèi)(包含邊界),若三棱錐P-ABC的側(cè)視圖如圖2所示,則此三棱錐的俯視圖不可能是12345678910111213141516√12345678910111213141516如圖(1)所示,當(dāng)點(diǎn)P為A1D1的中點(diǎn)時(shí),此時(shí)三棱錐P-ABC的俯視圖為選項(xiàng)C;如圖(3)所示,取A1D1和B1C1的中點(diǎn)E和F,連接EF,當(dāng)點(diǎn)P為EF的中點(diǎn)時(shí),此時(shí)三棱錐P-ABC的俯視圖為選項(xiàng)A,如圖(2)所示,當(dāng)點(diǎn)P為B1C1的中點(diǎn)時(shí),此時(shí)三棱錐P-ABC的俯視圖為選項(xiàng)B;所以此三棱錐P-ABC的俯視圖不可能是選項(xiàng)D.123456789101112131415167.(2022·湖北聯(lián)考)定義:24小時(shí)內(nèi)降水在平地上積水厚度(mm)來(lái)判斷降雨程度.其中小雨(<10mm),中雨(10mm~25mm),大雨(25mm~50mm),暴雨(50mm~100mm),小明用一個(gè)圓錐形容器接了24小時(shí)的雨水,如圖,則這天降雨屬于哪個(gè)等級(jí)A.小雨
B.中雨C.大雨
D.暴雨√123456789101112131415168.在直三棱柱ABC-A1B1C1中,AB=
,AA1=6,∠ACB=30°,則此直三棱柱的外接球的表面積是A.48π B.64π C.72π D.84π12345678910111213141516√12345678910111213141516如圖所示,設(shè)△ABC的外接圓的半徑為r,設(shè)直三棱柱ABC-A1B1C1的外接球的球半徑為R,所以該直三棱柱外接球的表面積是S=4πR2=84π.9.如圖,在正三棱錐P-ABC中,∠APB=∠BPC=∠CPA=30°,PA=PB=PC=2,一只蟲(chóng)子從A點(diǎn)出發(fā),繞三棱錐的三個(gè)側(cè)面爬行一周后,又回到A點(diǎn),則蟲(chóng)子爬行的最短距離是12345678910111213141516√將三棱錐由PA展開(kāi),如圖所示,則∠APA1=90°,12345678910111213141516所求最短距離為AA1的長(zhǎng)度,∵PA=2,∴由勾股定理可得1234567891011121314151610.(2022·八省八校聯(lián)考)如圖,已知正四面體ABCD的棱長(zhǎng)為1,過(guò)點(diǎn)B作截面α分別交側(cè)棱AC,AD于E,F(xiàn)兩點(diǎn),且四面體ABEF的體積為四面體ABCD體積的
,則EF的最小值為√12345678910111213141516記EF=a,AE=b,AF=c,1234567891011121314151611.(2022·聊城模擬)用與母線不垂直的兩個(gè)平行平面截一個(gè)圓柱,若兩個(gè)截面都是橢圓形狀,則稱夾在這兩個(gè)平行平面之間的幾何體為斜圓柱.這兩個(gè)截面稱為斜圓柱的底面,兩底面之間的距離稱為斜圓柱的高,斜圓柱的體積等于底面積乘以高.橢圓的面積等于長(zhǎng)半軸與短半軸長(zhǎng)之積的π倍,已知某圓柱的底面半徑為2,用與母線成45°角的兩個(gè)平行平面去截該圓柱,得到一個(gè)高為6的斜圓柱,對(duì)于這個(gè)斜圓柱,下列選項(xiàng)錯(cuò)誤的是√12345678910111213141516不妨過(guò)斜圓柱的最高點(diǎn)D和最低點(diǎn)B作平行于圓柱底面的截面圓,夾在它們之間的是圓柱,如圖,矩形ABCD是圓柱的軸截面,平行四邊形BFDE是斜圓柱的過(guò)底面橢圓的長(zhǎng)軸的截面,由圓柱的性質(zhì)知∠ABF=45°,12345678910111213141516EG⊥BF,垂足為G,則EG=6,由于斜圓柱的兩個(gè)底面的距離為6,而圓柱的底面直徑為4,所以斜圓柱內(nèi)半徑最大的球的半徑為2,則球的表面積為4π×22=16π,C錯(cuò)誤.12345678910111213141516√方法一
如圖,設(shè)該球的球心為O,半徑為R,正四棱錐的底面邊長(zhǎng)為a,高為h,12345678910111213141516解得R=3.1234567891011121314151612345678910111213141516方法二
如圖,設(shè)該球的球心為O,半徑為R,正四棱錐的底面邊長(zhǎng)為a,高為h,12345678910111213141516解得R=3.12345678910111213141516方法三
如圖,設(shè)該球的半徑為R,球心為O,正四棱錐的底面邊長(zhǎng)為a,高為h,正四棱錐的側(cè)棱與高所成的角為θ,12345678910111213141516所以l=6cosθ,12345678910111213141516則y=sinθcos2θ=t(1-t2)=t-t3,則y′=1-3t2.1234567891011121314151612345678910111213141516二、填空題13.(2022·湘潭模擬)陀螺是中國(guó)民間的娛樂(lè)工具之一,也叫做陀羅.陀螺的形狀結(jié)構(gòu)如圖所示,由一個(gè)同底的圓錐體和圓柱體組合而成,若圓錐體和圓柱體的高以及底面圓的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人事部關(guān)于評(píng)優(yōu)制度
- 中國(guó)的護(hù)工制度
- 2026年重慶高新區(qū)綜合執(zhí)法局招募法律援助人員的備考題庫(kù)及1套參考答案詳解
- 2025-2030醫(yī)用冷藏冷凍箱行業(yè)經(jīng)營(yíng)策略分析及投融資風(fēng)險(xiǎn)預(yù)警研究報(bào)告(-版)
- 中國(guó)醫(yī)學(xué)科學(xué)院系統(tǒng)醫(yī)學(xué)研究院蘇州系統(tǒng)醫(yī)學(xué)研究所2026年招聘20人備考題庫(kù)及答案詳解1套
- 2025-2030中國(guó)無(wú)灰分散劑行業(yè)銷(xiāo)售格局與發(fā)展前景戰(zhàn)略規(guī)劃研究報(bào)告
- 公務(wù)員閬中市委組織部關(guān)于閬中市2025年考調(diào)35人備考題庫(kù)完整答案詳解
- 2025至2030中國(guó)鋰電池回收利用行業(yè)市場(chǎng)潛力及政策導(dǎo)向分析報(bào)告
- 機(jī)關(guān)單位管理培訓(xùn)課件
- 2025至2030中國(guó)智能倉(cāng)儲(chǔ)行業(yè)市場(chǎng)現(xiàn)狀供需特點(diǎn)及投資效益研究報(bào)告
- 牛羊肉銷(xiāo)售合同協(xié)議書(shū)
- 漁獲物船上保鮮技術(shù)規(guī)范(DB3309-T 2004-2024)
- 《無(wú)人機(jī)搭載紅外熱像設(shè)備檢測(cè)建筑外墻及屋面作業(yè)》
- 秦腔課件教學(xué)
- DB51-T 1959-2022 中小學(xué)校學(xué)生宿舍(公寓)管理服務(wù)規(guī)范
- 水利工程施工監(jiān)理規(guī)范(SL288-2014)用表填表說(shuō)明及示例
- 妊娠合并膽汁淤積綜合征
- 新疆維吾爾自治區(qū)普通高校學(xué)生轉(zhuǎn)學(xué)申請(qǐng)(備案)表
- 內(nèi)鏡中心年終總結(jié)
- 園林苗木容器育苗技術(shù)
- 陜西省2023-2024學(xué)年高一上學(xué)期新高考解讀及選科簡(jiǎn)單指導(dǎo)(家長(zhǎng)版)課件
評(píng)論
0/150
提交評(píng)論