難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(含解析)_第1頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(含解析)_第2頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(含解析)_第3頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(含解析)_第4頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(含解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,是的直徑,弦于點(diǎn),,,則的長為(

)A.4 B.5 C.8 D.162、如圖,、分別切于點(diǎn)、,點(diǎn)為優(yōu)弧上一點(diǎn),若,則的度數(shù)為(

)A. B. C. D.3、如圖,AC是⊙O的直徑,弦AB//CD,若∠BAC=32°,則∠AOD等于(

)A.64° B.48° C.32° D.76°4、如圖,、為的切線,、為切點(diǎn),點(diǎn)為弧上一點(diǎn),過點(diǎn)作的切線分別交、于、,若,則的周長等于(

).A. B. C. D.5、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.6、已知⊙O的半徑等于3,圓心O到點(diǎn)P的距離為5,那么點(diǎn)P與⊙O的位置關(guān)系是()A.點(diǎn)P在⊙O內(nèi) B.點(diǎn)P在⊙O外 C.點(diǎn)P在⊙O上 D.無法確定7、以原點(diǎn)O為圓心的圓交x軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°8、如圖,已知是的兩條切線,A,B為切點(diǎn),線段交于點(diǎn)M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(

)A.1 B.2 C.3 D.49、如圖,矩形中,,,,分別是,邊上的動點(diǎn),,以為直徑的與交于點(diǎn),.則的最大值為(

).A.48 B.45 C.42 D.4010、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,AB為圓O的切線,點(diǎn)A為切點(diǎn),OB交圓O于點(diǎn)C,點(diǎn)D在圓O上,連接AD、CD、OA,若∠ADC=25°,則∠B的度數(shù)為____.2、如圖:四邊形ABCD內(nèi)接于⊙O,E為BC延長線上一點(diǎn),若∠A=n°,則∠DCE=_____°.3、如圖,一個底面半徑為3的圓錐,母線,D為的中點(diǎn),一只螞蟻從點(diǎn)A出發(fā),沿著圓錐的側(cè)面爬行到D,則螞蟻爬行的最短路程為______.4、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點(diǎn)A,半徑為;的圓心為點(diǎn)B,半徑為;的圓心為點(diǎn)C,半徑為;的圓心為點(diǎn)D,半徑為;…的圓心依次按點(diǎn)A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.5、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點(diǎn)D為邊AC的中點(diǎn).以點(diǎn)B為圓心,BD為半徑畫圓弧,交邊BC于點(diǎn)E,則圖中陰影部分圖形的面積為______.a(chǎn)6、如圖,在甲,,,,以點(diǎn)為圓心,的長為半徑作圓,交于點(diǎn),交于點(diǎn),陰影部分的面積為__________(結(jié)果保留).7、如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,1)、B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸于點(diǎn)C、D,則CD的長是____.8、如圖,正方形ABCD,邊長為4,點(diǎn)P和點(diǎn)Q在正方形的邊上運(yùn)動,且PQ=4,若點(diǎn)P從點(diǎn)B出發(fā)沿B→C→D→A的路線向點(diǎn)A運(yùn)動,到點(diǎn)A停止運(yùn)動;點(diǎn)Q從點(diǎn)A出發(fā),沿A→B→C→D的路線向點(diǎn)D運(yùn)動,到達(dá)點(diǎn)D停止運(yùn)動.它們同時出發(fā),且運(yùn)動速度相同,則在運(yùn)動過程中PQ的中點(diǎn)O所經(jīng)過的路徑長為_____.9、如圖,在矩形中,是邊上一點(diǎn),連接,將矩形沿翻折,使點(diǎn)落在邊上點(diǎn)處,連接.在上取點(diǎn),以點(diǎn)為圓心,長為半徑作⊙與相切于點(diǎn).若,,給出下列結(jié)論:①是的中點(diǎn);②⊙的半徑是2;③;④.其中正確的是________.(填序號)10、如圖,已知是的直徑,是的切線,連接交于點(diǎn),連接.若,則的度數(shù)是_________.三、解答題(5小題,每小題6分,共計(jì)30分)1、在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)A,D的坐標(biāo)分別是,其中.(1)若點(diǎn)B在x軸的上方,①,求的長;②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過點(diǎn)B,C.對于任意的,當(dāng)a,m的值變化時,拋物線會不同,記其中任意兩條拋物線的頂點(diǎn)為(與不重合),則命題“對所有的a,b,當(dāng)時,一定不存在的情形.”是否正確?請說明理由.2、如圖,在中,.(1)請作出經(jīng)過A、B兩點(diǎn)的圓,且該圓的圓心O落在線段AC上(尺規(guī)作圖,保留作圖痕跡,不寫做法);(2)在(1)的條件下,已知,將線段AB繞點(diǎn)A逆時針旋轉(zhuǎn)后與⊙O交于點(diǎn)E.試證明:B、C、E三點(diǎn)共線.3、已知PA,PB分別與⊙O相切于點(diǎn)A,B,∠APB=80°,C為⊙O上一點(diǎn).(1)如圖①,求∠ACB的大小;(2)如圖②,AE為⊙O的直徑,AE與BC相交于點(diǎn)D.若AB=AD,求∠EAC的大小.4、問題提出(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長為問題探究(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動點(diǎn),求E、P之間的最大距離;問題解決(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?5、如圖,在中,,以為直徑作,過點(diǎn)作交于,.求證:是的切線.-參考答案-一、單選題1、C【解析】【分析】根據(jù)垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點(diǎn)】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內(nèi)容并熟練地運(yùn)用是解題的關(guān)鍵.2、C【解析】【分析】要求∠ACB的度數(shù),只需根據(jù)圓周角定理構(gòu)造它所對的弧所對的圓心角,即連接OA,OB;再根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故選:C.【考點(diǎn)】此題考查了切線的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.3、A【解析】【分析】由AB//CD,∠BAC=32°,根據(jù)平行線的性質(zhì),即可求得∠ACD的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠AOD的度數(shù).【詳解】解:∵弦AB//CD,∠BAC=32°,∴∠ACD=∠BAD=32°,∴∠AOD=2∠ACD=2×32°=64°.故選:A【考點(diǎn)】此題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是注意掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.4、B【解析】【分析】由切線長定理可得,然后根據(jù)線段之間的轉(zhuǎn)化即可求得的周長.【詳解】∵、為的切線,所以,又∵為的切線,∴,∴的周長.故選:B.【考點(diǎn)】此題考查了圓中切線長定理的運(yùn)用,解題的關(guān)鍵是熟練掌握切線長定理.5、B【解析】【分析】根據(jù)題意可以求得半徑,進(jìn)而解答即可.【詳解】因?yàn)閳A內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點(diǎn)】本題考查正多邊形和圓,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.6、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點(diǎn)P在⊙O外.故選:B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,熟練掌握d,r法則是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點(diǎn)】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.8、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點(diǎn),連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點(diǎn)】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.9、A【解析】【分析】過A點(diǎn)作AH⊥BD于H,連接OM,如圖,先利用勾股定理計(jì)算出BD=75,則利用面積法可計(jì)算出AH=36,再證明點(diǎn)O在AH上時,OH最短,此時HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點(diǎn)作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點(diǎn)O在AH上時,OH最短,∵HM=,∴此時HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點(diǎn)】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱司匦蔚男再|(zhì)和勾股定理.10、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識點(diǎn),能求出CE=DE是解此題的關(guān)鍵.二、填空題1、40°【解析】【分析】根據(jù)圓周角和圓心角的關(guān)系,可以得到∠AOC的度數(shù),然后根據(jù)AB為⊙O的切線和直角三角形的兩個銳角互余,即可求得∠B的度數(shù).【詳解】解:∵∠ADC=25°,∴∠AOC=50°,∵AB為⊙O的切線,點(diǎn)A為切點(diǎn),∴∠OAB=90°,∴∠B=90°-∠AOC=90°-50°=40°,故答案為:40°.【考點(diǎn)】本題考查切線的性質(zhì)、圓周角定理、直角三角形的性質(zhì),利用數(shù)形結(jié)合的思想解答問題是解答本題的關(guān)鍵.2、n【解析】【分析】利用圓內(nèi)接四邊形的對角互補(bǔ)和鄰補(bǔ)角的性質(zhì)求解.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案為n【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì).解決本題的關(guān)鍵是掌握:圓內(nèi)接四邊形的對角互補(bǔ).3、【解析】【分析】先畫出圓錐側(cè)面展開圖(見解析),再利用弧長公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質(zhì)、勾股定理可得,最后根據(jù)兩點(diǎn)之間線段最短即可得.【詳解】畫出圓錐側(cè)面展開圖如下:如圖,連接AB、AD,設(shè)圓錐側(cè)面展開圖的圓心角的度數(shù)為,因?yàn)閳A錐側(cè)面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點(diǎn)D是BC的中點(diǎn),,,在中,,由兩點(diǎn)之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點(diǎn)】本題考查了圓錐側(cè)面展開圖、弧長公式、等邊三角形的判定與性質(zhì)等知識點(diǎn),熟練掌握圓錐側(cè)面展開圖是解題關(guān)鍵.4、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計(jì)算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點(diǎn)】此題主要考查了弧長的計(jì)算,弧長的計(jì)算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.5、【解析】【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得到BD=CD=9,則∠DBC=∠C=22°,然后根據(jù)扇形的面積公式計(jì)算.【詳解】解:∵∠ABC=90°,點(diǎn)D為邊AC的中點(diǎn),∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點(diǎn)】本題考查了扇形面積的計(jì)算:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長).也考查了直角三角形斜邊上的中線性質(zhì).6、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計(jì)算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點(diǎn)】本題考查的是扇形面積計(jì)算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.7、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點(diǎn)】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.8、【解析】【分析】【詳解】解:畫出點(diǎn)O運(yùn)動的軌跡,如圖虛線部分,則點(diǎn)P從B到A的運(yùn)動過程中,PQ的中點(diǎn)O所經(jīng)過的路線長等于3π,故答案為:3π.9、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點(diǎn);∴①正確;②連接OP,∵⊙O與AD相切于點(diǎn)P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設(shè)OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.10、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點(diǎn)】本題考查了切線的性質(zhì)和圓周角定理,掌握圓周角定理是解題的關(guān)鍵.三、解答題1、(1)①4;②(2)命題正確,證明見解析【解析】【分析】(1)①根據(jù)平行四邊形中AD=BC計(jì)算即可;②根據(jù)距離公式證明AD=AB即可說明四邊形是菱形;(2)由BC=AD求出B的橫坐標(biāo),再在解析式中求出B坐標(biāo),即可求出AB的解析式,同時根據(jù)頂點(diǎn)坐標(biāo)特征求出的解析式,再利用反證法證明即可.(1)①∵平行四邊形∴∵A,D的坐標(biāo)分別是,其中∴∵∴②∵,∴∵∴∵∴∴∵平行四邊形∴四邊形是菱形(2)命題正確,理由如下:拋物線的對稱軸為∴頂點(diǎn)坐標(biāo)為∴頂點(diǎn)在定直線上移動即的解析式為,∵拋物線經(jīng)過點(diǎn)B,C.且對稱軸為,∴B點(diǎn)橫坐標(biāo)為∴B點(diǎn)坐標(biāo)為:設(shè)直線AB的解析式為則假設(shè)對所有的a,b,當(dāng)時,存在的情形,∴對所有的a,b,當(dāng)時,∴去分母整理得:∵∴,此時∴∵∴互相矛盾,假設(shè)不成立∴對所有的a,b,當(dāng)時,一定不存在的情形.【考點(diǎn)】本題考查平行四邊形的性質(zhì)、菱形的判定、反證法、二次函數(shù)的性質(zhì).解題的關(guān)鍵是利用平行四邊形對邊相等找關(guān)系,最后一問計(jì)算量比較大,需要特別注意.2、(1)見解析(2)見解析【解析】【分析】(1)只需要作AB的垂直平分線,其與AC的交點(diǎn)即為圓心O,由此作圖即可;(2)先由圓周角定理求出,再由旋轉(zhuǎn)的性質(zhì)求出,從而得到,證明△OBC≌△OEC得到∠OCE=∠OCB=90°,則∠OCB+∠OCE=180°,即可證明B、C、E三點(diǎn)共線.(1)解:如圖所示,圓O即為所求;(2)解:如圖所示,連接CE,OE,∵,∴,由旋轉(zhuǎn)的性質(zhì)可知,∴,∴,在△OBC和△OEC中,,∴△OBC≌△OEC(SAS),∴∠OCE=∠OCB=90°,∴∠OCB+∠OCE=180°,∴B、C、E三點(diǎn)共線.【考點(diǎn)】本題主要考查了線段垂直平分線的尺規(guī)作圖,畫圓,圓周角定理,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定等等,熟知性格知識是解題的關(guān)鍵.3、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)連接OA、OB,根據(jù)切線性質(zhì)和∠P=80°,得到∠AOB=100°,根據(jù)圓周角定理得到∠C=50°;(2)連接CE,證明∠BCE=∠BAE=40°,根據(jù)等腰三角形性質(zhì)得到∠ABD=∠ADB=70°,由三角形外角性質(zhì)得到∠EAC=20°.(1)連接OA、OB,

∵PA,PB是⊙O的切線,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圓周角定理得,∠ACB=∠AOB=50°;(2)連接CE,∵AE為⊙O的直徑,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【考點(diǎn)】本題考查了圓的切線,圓周角,等腰三角形,三角形外角,熟練掌握圓的切線性質(zhì),圓周角定理及推論,等腰三角形的性質(zhì),三角形外角性質(zhì),是解決問題的關(guān)鍵.4、(1);(2)E、P之間的最大距離為7;(3)修建這條小路最多要花費(fèi)元.【解析】【分析】(1)若AO交BC于K,則AK=8,在Rt△BOK中,設(shè)OB=x,可得x2=62+(8﹣x)2,解方程可得OB的長;(2)延長EO交半圓于點(diǎn)P,可求出此時E、P之間的最大距離為OE+OP的長即可;(3)先求出所在圓的半徑,過點(diǎn)D作DG⊥BC,垂足為G,連接DO并延長交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論