2025-2026學(xué)年北京市順義區(qū)牛欄山一中高三(上)月考數(shù)學(xué)試卷(9月份)(含答案)_第1頁
2025-2026學(xué)年北京市順義區(qū)牛欄山一中高三(上)月考數(shù)學(xué)試卷(9月份)(含答案)_第2頁
2025-2026學(xué)年北京市順義區(qū)牛欄山一中高三(上)月考數(shù)學(xué)試卷(9月份)(含答案)_第3頁
2025-2026學(xué)年北京市順義區(qū)牛欄山一中高三(上)月考數(shù)學(xué)試卷(9月份)(含答案)_第4頁
2025-2026學(xué)年北京市順義區(qū)牛欄山一中高三(上)月考數(shù)學(xué)試卷(9月份)(含答案)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第=page11頁,共=sectionpages11頁2025-2026學(xué)年北京市順義區(qū)牛欄山一中高三(上)9月月考數(shù)學(xué)試卷一、單選題:本題共10小題,每小題4分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.已知集合A={x|x>1},若a∈A,則(

)A.a>1 B.a<1 C.a≥1 D.a≤12.下列命題為真命題的是(

)A.?a>0,a+1a>2 B.?a>0,a+1a<23.復(fù)數(shù)z=1+3i,則|z?A.2 B.4 C.2i D.4i4.已知a>b>c>d,則下列不等式中一定成立的是(

)A.a+b>c B.ac2>bc2 5.不等式log2x<1?x的解集為(

)A.(0,1) B.(1,+∞) C.(0,+∞) D.(?∞,1)6.P是△ABC所在平面內(nèi)的一點,滿足PA?PB?A.點P在線段BC上 B.點P在線段BC的延長線上

C.點P在線段AC上 D.點P在線段AC的延長線上7.對于定義域為(a,b)的函數(shù)f(x),“函數(shù)f(x)在(a,b)上的值域為(f(a),f(b))”是“函數(shù)f(x)在(a,b)上單調(diào)遞增”的(

)A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件8.在聲學(xué)中,聲音的強度級(單位:dB)常用于描述聲音的強弱.強度級L計算方式為:L=10lgII0,其中I是聲音強度(單位:),I0是常數(shù),表示人耳可聽到的最小強度.設(shè)聲源A單獨發(fā)聲時,產(chǎn)生的聲音強度為IA,強度級為LA;聲源B單獨發(fā)聲時,產(chǎn)生的聲音強度為IB,強度級為LB;且IBA.0.47 B.1.7 C.3 D.4.79.在平面直角坐標xOy中,已知三點A(1,1),B(m,3),C(3,n),若向量OB,OC在OA上的投影向量相同,則m?n的值為(

)A.?3 B.0 C.3 D.610.數(shù)集A={a1,a2,a3,a4},其中A.6 B.8 C.10 D.12二、填空題:本題共5小題,每小題5分,共25分。11.復(fù)數(shù)z=(1+i)i對應(yīng)的點在第______象限.12.f(x)=2x?12x13.對于定義域為D的函數(shù)f(x)及g(x)=f′(x)滿足條件:對任意x∈D,f′(x)<0且g′(x)>0,寫出一個滿足條件的函數(shù)f(x)=______.14.集合Ak={1,2,3,?,2k},非空集合P?Ak,且滿足:對任意a∈P,均存在b∈P,使ab=2k.記符合要求的15.數(shù)列{an}為無窮非負整數(shù)數(shù)列,若對任意k∈N?,均存在i1,i2,?,im∈N?,且i1<i2<?<im,使ai+ai2+?aim=k,則稱數(shù)列{an}為“完備數(shù)列”.給出下列四個結(jié)論:

①若正項等差數(shù)列三、解答題:本題共6小題,共85分。解答應(yīng)寫出文字說明,證明過程或演算步驟。16.(本小題14分)

等比數(shù)列{an}中,a1=4,a3=1,公比q<0.對于數(shù)列{bn},點(n,bn)(n∈N?)都在函數(shù)f(x)=2x?1的圖象上,求:

(1)求數(shù)列{an}17.(本小題14分)

已知f(x)=x2?3x+t,且f(x)<0的解集為{x|1<x<m,x∈R}.

(1)求t,m的值;

(2)若f(x)x≥n18.(本小題14分)

數(shù)列{xn}滿足x1=1,且xn+1=?xn2+xn+c(c<0,n∈N?).19.(本小題14分)

已知函數(shù)f(x)=lnx+ax,其中a∈R.

(1)若曲線y=f(x)在x=x0處的切線過原點,求x0的值.

(2)當a=1時,

①判斷過點(0,1),(2,0)的切線條數(shù),直接寫出結(jié)果;

②判斷過點20.(本小題14分)

已知函數(shù)f(x)=ae2x+(a+2)ex+x(a∈R).

(1)當a=?1時,求函數(shù)f(x)的極值;

(2)若函數(shù)21.(本小題15分)

已知集合Sn={X|X=(x1,x2,?,xn),xi∈{0,1},i=1,2,?,n}(n≥3),T是Sn的非空子集.對于任意元素X=(x1,x2,?,xn),Y=(y1,y2,?,yn)∈Sn,定義X與Y之間的距離為d(X,Y)=i=1n|xi?yi|,記λ(T)=min{d(X,Y)|X,Y∈T,X≠Y}為子集T的特征值,其中minA表示有限集A中的最小數(shù).

(1)當n=3時,直接寫出集合參考答案1.A

2.C

3.B

4.C

5.A

6.D

7.B

8.D

9.B

10.D

11.二

12.?n

13.?lnx

14.3

2m+115.①④

16.等比數(shù)列{an}中,a1=4,a3=1,公比q<0.對于數(shù)列{bn},點(n,bn)(n∈N?)都在函數(shù)f(x)=2x?1的圖象上,

(1)由題設(shè)q2=a3a1=14且q<0,則q=?12,則an=a1qn?1=4?(?12)n?1;

(2)由題設(shè)bn=2n?1,則Tn=2(1+2+?+n)?n=2×17.(1)根據(jù)題設(shè)x2?3x+t=0的兩個根為1,m,且m>1,那么m+1=3m×1=t,可得t=m=2;

(2)根據(jù)第一問及已知n≤f(x)x=x2?3x+2x=x+2x?3在(1,2)上恒成立,

根據(jù)對勾函數(shù)的性質(zhì)知y=x+218.(1)由x1=1,且xn+1=?xn2+xn+c(c<0,n∈N?),

令n=1,得x2=?x12+x1+c=?1+1+c=c,

令n=2,得x3=?x22+x2+c=?c2+c+c=?c2+2c;

(2)數(shù)列{xn}不是等差數(shù)列,理由如下:

若數(shù)列{xn}為等差數(shù)列,由等差數(shù)列的性質(zhì)可得:

2x2=x1+x3=1?c2+2c=2c,解得c=?1(c<0),

而當c=?1時,x19.(1)因為f(x)=lnx+ax,

所以f′(x)=1x+a,

所以曲線y=f(x)在x=x0處的切線為y?(lnx0+ax0)=(1x0+a)(x?x0),又其過原點,

所以?lnx0?ax0=?x0?(1x0+a)=?ax0?1,解得lnx0=1,

所以x0=e;

(2)當a=1時,f(x)=lnx+x,

所以f′(x)=1x+1,設(shè)切點為(m,m+lnm)且m>0,

所以切線的斜率為f′(m)=1m+1,

所以切線方程為y?(m+lnm)=(1m+1)(x?m),

所以(m+1)x?my+mlnm?m=0,

①若切線過點(0,1),則mlnm?2m=0,可得m=e2,即過點(0,1)的切線僅有一條;

若切線過點(2,0),則m+2+mlnm=0,令y=m+2+mlnm,則y′=2+lnm,

所以0<m<e?2時y′<0,m>e?2時y′>0,

則y=m+2+mlnm在(0,e?2)上單調(diào)遞減,在(e?2,+∞)上單調(diào)遞增,

當m=e?2時y=2?e?2>0,x→0時y→2,x→+∞時20.(1)當a=?1時,f(x)=?e2x+ex+x,

則f′(x)=?2e2x+ex+1=?(2ex+1)(ex?1),

由f′(x)>0得,即ex?1<0,得x<0,

由f′(x)<0得,即ex?1>0,得x>0,

則函數(shù)f(x)在(?∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,

得f(x)在x=0處取得極大值,f(0)=?1+1+0=0,無極小值.

故f(x)的極大值為0,無極小值.

(2)f′(x)=2ae2x+(a+2)ex+1=(aex+1)(2ex+1),

當a≥0時,因為x∈(?1,+∞),所以f′(x)>0,

f(x)在區(qū)間(?1,+∞)上單調(diào)遞增,且f(0)=2a+2>0,

因為f(x)在區(qū)間(?1,+∞)上有零點,

所以f(?1)=ae2+a+2e?1<0,解得

a<e2?2ee+1,

所以0≤a<e2?2ee+1;

當?e<a<0時,即ln(?1a)>?1,

由f′(x)>0得,即aex+1>0,得?1<x<ln(?1a),

由f′(x)<0得,即aex+1<0,得x>ln(?1a),

則函數(shù)f(x)在(?1,ln(?1a))上單調(diào)遞增,在(ln(?121.(1)對集合T1,d((0,1,0),(1,0,1))=|0?1|+|1?0|+|0?1|=3,

d((1,0,0),(0,1,0))=|1?0|+|0?1|+|0?0|=2,

d((1,0,0),(1,0,1))=|1?1|+|0?0|+|0?1|=1,

故λ(T1)=1;

對集合T2,d((1,0,0),(0,0,1))=|1?0|+|0?0|+|0?1|=2,

d((0,1,0),(0,0,1))=|0?0|+|1?0|+|0?1|=2,

d((1,1,1),(0,1,0))=|1?0|+|1?1|+|1?0|=2,

d((1,1,1),(0,0,1))=|1?0|+|1?0|+|1?1|=2,

d((1,0,0),(0,1,0))=|1?0|+|0?1|+|0?0|=2,

d((1,1,1),(1,0,0))=|1?1|+|1?0|+|1?0|=2,

故λ(T2)=2;

(2)由于集合Sn中元素的每個分量取值有兩種可能,所以集合Sn中共有2n個元素,

對于任意X=(x1,x2,?,xn),其分量和x1+x2+?+xn可能是奇數(shù)也可能是偶數(shù),

由于每個分量都獨立取值,所以分量和為奇數(shù)和偶數(shù)的個數(shù)相同,

因為T中元素的分量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論