版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中考數(shù)學(xué)總復(fù)習(xí)《圓》每日一練試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、往直徑為的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為(
)A. B. C. D.2、下列4個(gè)說法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對(duì)稱軸;④弧是半圓;正確的有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長(zhǎng)是()A.6 B.3 C.2 D.4、已知點(diǎn)在上.則下列命題為真命題的是(
)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦5、如圖,公園內(nèi)有一個(gè)半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點(diǎn),為圓心,,小強(qiáng)從走到,走便民路比走觀賞路少走(
)米.A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點(diǎn)A,半徑為;的圓心為點(diǎn)B,半徑為;的圓心為點(diǎn)C,半徑為;的圓心為點(diǎn)D,半徑為;…的圓心依次按點(diǎn)A,B,C,D循環(huán).若正方形的邊長(zhǎng)為1,則的長(zhǎng)是_________.2、如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點(diǎn)M的坐標(biāo)為___________.3、劉徽是我國(guó)魏晉時(shí)期卓越的數(shù)學(xué)家,他在《九章算術(shù)》中提出了“割圓術(shù)”,利用圓的內(nèi)接正多邊形逐步逼近圓來近似計(jì)算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來近似估計(jì)的面積,設(shè)的半徑為1,則__________.4、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.5、如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑畫弧,剛好過點(diǎn)O,以點(diǎn)D為圓心,DO的長(zhǎng)為半徑畫弧,交AD于點(diǎn)E,若AC=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長(zhǎng)線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長(zhǎng).2、在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)A,D的坐標(biāo)分別是,其中.(1)若點(diǎn)B在x軸的上方,①,求的長(zhǎng);②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過點(diǎn)B,C.對(duì)于任意的,當(dāng)a,m的值變化時(shí),拋物線會(huì)不同,記其中任意兩條拋物線的頂點(diǎn)為(與不重合),則命題“對(duì)所有的a,b,當(dāng)時(shí),一定不存在的情形.”是否正確?請(qǐng)說明理由.3、如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點(diǎn)C作CE⊥AD交AD的延長(zhǎng)線于點(diǎn)E,延長(zhǎng)EC,AB交于點(diǎn)F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.4、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長(zhǎng)為相鄰的三條邊的比為,求此四邊形各邊的長(zhǎng).5、如圖,,分別切、于點(diǎn)、.切于點(diǎn),交于點(diǎn)與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫作法)(2)若半徑為1,,求的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】過點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,根據(jù)垂徑定理即可求得AD的長(zhǎng),又由⊙O的直徑為,求得OA的長(zhǎng),然后根據(jù)勾股定理,即可求得OD的長(zhǎng),進(jìn)而求得油的最大深度的長(zhǎng).【詳解】解:過點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,由垂徑定理得:,∵⊙O的直徑為,∴,在中,由勾股定理得:,∴,∴油的最大深度為,故選:.【考點(diǎn)】本題主要考查了垂徑定理的知識(shí).此題難度不大,解題的關(guān)鍵是注意輔助線的作法,構(gòu)造直角三角形,利用勾股定理解決.2、B【解析】【分析】根據(jù)弧的分類、圓的性質(zhì)逐一判斷即可.【詳解】解:①直徑是最長(zhǎng)的弦,故正確;②最長(zhǎng)的弦才是直徑,故錯(cuò)誤;③過圓心的任一直線都是圓的對(duì)稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯(cuò)誤,正確的有兩個(gè),故選B.【考點(diǎn)】本題考查了對(duì)圓的認(rèn)識(shí),熟知弦的定義、弧的分類是本題的關(guān)鍵.3、C【解析】【分析】如圖,過作于過作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對(duì)各項(xiàng)判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時(shí),半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí),解答的關(guān)鍵是會(huì)利用所學(xué)的知識(shí)進(jìn)行推理證明命題的真假.5、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠A,從而得到OC和AC,可得AB,然后利用弧長(zhǎng)公式計(jì)算出的長(zhǎng),最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點(diǎn)】本題考查了垂徑定理:垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計(jì)算弦長(zhǎng)、半徑、弦心距等問題.二、填空題1、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計(jì)算弧長(zhǎng).【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長(zhǎng)=.故答案為:.【考點(diǎn)】此題主要考查了弧長(zhǎng)的計(jì)算,弧長(zhǎng)的計(jì)算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.2、(6,6)【解析】【分析】如圖:由題意可得M在AB、BC的垂直平分線上,則BN=CN;證得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【詳解】解:如圖∵圓M是△ABC的外接圓∴點(diǎn)M在AB、BC的垂直平分線上,∴BN=CN,∵點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,點(diǎn)M的坐標(biāo)為(6,6).故答案為(6,6).【考點(diǎn)】本題考查了三角形的外接圓與外心、坐標(biāo)與圖形性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識(shí),其中判定△OMN為等腰直角三角形是解答本題的關(guān)鍵.3、【解析】【分析】如圖,過點(diǎn)A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過點(diǎn)A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點(diǎn)】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關(guān)鍵.4、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點(diǎn)】本題考查了圓周角定理及其推論:同弧所對(duì)的圓周角相等;半圓(弧)和直徑所對(duì)的圓周角是直角,正確添加輔助線是解題的關(guān)鍵.5、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長(zhǎng),∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點(diǎn)】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.三、解答題1、(1)證明見解析(2)2【解析】【分析】(1)連接OC,由AB是⊙O的直徑可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性質(zhì)結(jié)合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切線;(2)在Rt△OCD中,由勾股定理可求出OD的值,進(jìn)而可得出BD的長(zhǎng).【詳解】解:(1)如圖,連接OC.∵AB是⊙O的直徑,C是⊙O上一點(diǎn),∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切線.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.2、(1)①4;②(2)命題正確,證明見解析【解析】【分析】(1)①根據(jù)平行四邊形中AD=BC計(jì)算即可;②根據(jù)距離公式證明AD=AB即可說明四邊形是菱形;(2)由BC=AD求出B的橫坐標(biāo),再在解析式中求出B坐標(biāo),即可求出AB的解析式,同時(shí)根據(jù)頂點(diǎn)坐標(biāo)特征求出的解析式,再利用反證法證明即可.(1)①∵平行四邊形∴∵A,D的坐標(biāo)分別是,其中∴∵∴②∵,∴∵∴∵∴∴∵平行四邊形∴四邊形是菱形(2)命題正確,理由如下:拋物線的對(duì)稱軸為∴頂點(diǎn)坐標(biāo)為∴頂點(diǎn)在定直線上移動(dòng)即的解析式為,∵拋物線經(jīng)過點(diǎn)B,C.且對(duì)稱軸為,∴B點(diǎn)橫坐標(biāo)為∴B點(diǎn)坐標(biāo)為:設(shè)直線AB的解析式為則假設(shè)對(duì)所有的a,b,當(dāng)時(shí),存在的情形,∴對(duì)所有的a,b,當(dāng)時(shí),∴去分母整理得:∵∴,此時(shí)∴∵∴互相矛盾,假設(shè)不成立∴對(duì)所有的a,b,當(dāng)時(shí),一定不存在的情形.【考點(diǎn)】本題考查平行四邊形的性質(zhì)、菱形的判定、反證法、二次函數(shù)的性質(zhì).解題的關(guān)鍵是利用平行四邊形對(duì)邊相等找關(guān)系,最后一問計(jì)算量比較大,需要特別注意.3、(1)見解析;(2)⊙O的半徑是4.5【解析】【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得,再根據(jù)等量代換和直角三角形的性質(zhì)可得,由切線的判定可得結(jié)論;(2)如圖2,過點(diǎn)O作于G,連接OC,OD,則,先根據(jù)三個(gè)角是直角的四邊形是矩形得四邊形OGEC是矩形,設(shè)⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵,∴,∵四邊形ABCD內(nèi)接于⊙O,∴又∴,∵,∴,∵,∴,∴,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點(diǎn)O作于G,連接OC,OD,則,∵,∴四邊形OGEC是矩形,∴,設(shè)⊙O的半徑為x,Rt△CDE中,,∴,∴,,由勾股定理得,∴,解得:,∴⊙O的半徑是4.5.【考點(diǎn)】本題考查的是圓的綜合,涉及到圓的切線的證明、勾股定理以及矩形的性質(zhì),熟練掌握相關(guān)性質(zhì)是解決問題的關(guān)鍵.4、(1)=;(2)答案見解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線長(zhǎng)定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長(zhǎng)建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 包頭2025年內(nèi)蒙古包頭市生態(tài)環(huán)境局局屬事業(yè)單位引進(jìn)人才筆試歷年參考題庫(kù)附帶答案詳解
- 樂山2025年四川樂山市市場(chǎng)監(jiān)督管理局選調(diào)事業(yè)單位工作人員3人筆試歷年參考題庫(kù)附帶答案詳解
- 職業(yè)性耳鼻喉?yè)p傷的急救與多學(xué)科協(xié)作
- 2026年中醫(yī)針灸推拿基礎(chǔ)知識(shí)試題庫(kù)
- 2026年網(wǎng)絡(luò)安全專家網(wǎng)絡(luò)攻擊防范考試題庫(kù)
- 2026年會(huì)計(jì)基礎(chǔ)知識(shí)和財(cái)務(wù)操作試題
- 職業(yè)性眼病與工作環(huán)境因素的關(guān)聯(lián)研究
- 2026年中級(jí)服裝設(shè)計(jì)師理論考試模擬卷
- 公會(huì)經(jīng)費(fèi)支出相關(guān)制度
- 2026年醫(yī)學(xué)基礎(chǔ)知識(shí)與臨床實(shí)踐認(rèn)證題庫(kù)
- 江蘇省城鎮(zhèn)供水管道清洗工程估價(jià)表及工程量計(jì)算標(biāo)準(zhǔn) 2025
- 2025年國(guó)家能源局公務(wù)員面試備考指南及模擬題集
- 2025年CCAA國(guó)家注冊(cè)審核員考試(有機(jī)產(chǎn)品認(rèn)證基礎(chǔ))復(fù)習(xí)題及答案一
- 軍隊(duì)自行采購(gòu)管理辦法
- 2025年廉政知識(shí)測(cè)試題庫(kù)(含答案)
- 脊柱內(nèi)鏡手術(shù)機(jī)器人系統(tǒng)設(shè)計(jì)與精準(zhǔn)位置控制研究
- (高清版)DG∕TJ 08-9-2023 建筑抗震設(shè)計(jì)標(biāo)準(zhǔn)
- 《特種設(shè)備74號(hào)令宣貫材料》知識(shí)培訓(xùn)
- 波形護(hù)欄施工質(zhì)量控制方案
- 2024年重慶市中考英語(yǔ)試卷真題B卷(含標(biāo)準(zhǔn)答案及解析)+聽力音頻
- 系統(tǒng)性紅斑狼瘡的飲食護(hù)理
評(píng)論
0/150
提交評(píng)論