版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.2、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.163、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.34、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為()A. B. C. D.5、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點,且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________2、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.3、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.4、點D、E、F分別是△ABC三邊的中點,△ABC的周長為24,則△DEF的周長為______.5、如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長為___.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,對角線AC、BD交于點O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.
2、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標(biāo);②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標(biāo);若不能,請說明理由.3、如圖,在等腰三角形ABC中,AB=BC,將等腰三角形ABC繞頂點B按逆時針方向旋轉(zhuǎn)角a到的位置,AB與相交于點D,AC與分別交于點E,F(xiàn).(1)求證:BCF;(2)當(dāng)C=a時,判定四邊形的形狀并說明理由.4、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.5、如圖,在平行四邊形ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.2、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.3、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運用這些性質(zhì)解決問題.4、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時,EF最大,因為N與B重合時DN最大,此時根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過點D作DH⊥AB交AB于點H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時,EF最大,∴N與B重合時DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.5、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因為∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點睛】考查菱形的邊的性質(zhì),同時綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).二、填空題1、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進行求解.2、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.3、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.4、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點睛】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.5、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運用了方程思想,關(guān)鍵是證明三角形全等.三、解答題1、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質(zhì)求出AO,再利用勾股定理求出OB的長,故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四邊形ABCD是平行四邊形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【點睛】此題主要考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)及勾股定理的應(yīng)用.2、(1)見解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.
【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時,;當(dāng)時,;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標(biāo)為(12,0),B點坐標(biāo)為(-8,0),C點坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時,同理可得,∴,∴M點的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;
②如圖3-3所示,當(dāng)OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M的坐標(biāo)為(0,10);如圖3-4所示,當(dāng)時,∴此時M點與A點重合,∴M點的坐標(biāo)為(12,0);如圖3-5所示,當(dāng)OM=ME時,過點E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設(shè),則,∵,∴,解得,∴M點的坐標(biāo)為(,0);綜上所述,當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.【點睛】本題主要考查了坐標(biāo)與圖形,勾股定理,等腰三角形的性質(zhì)與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關(guān)鍵在于能夠利用數(shù)形結(jié)合和分類討論的思想求解.3、(1)見解析;(2)菱形,見解析【分析】(1)根據(jù)等腰三角形的性質(zhì)得到AB=BC,∠A=∠C,由旋轉(zhuǎn)的性質(zhì)得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;
(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通過證明∠FBC=∠可得BC,利用∠EC=∠C=180°推出∠EC+∠=180°得到BCE從而證明四邊形為平行四邊形再利用B=BC可證明四邊形為菱形.【詳解】(1)證明:∵等腰三角形ABC旋轉(zhuǎn)角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠CB=B=AB=BC∴BCF(ASA)(2)解:四邊形為菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=aB=B=AB=BC又∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年指紋手機企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年巨型計算機企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年臨時托兒服務(wù)企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年電子元件、組件零件企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年制藥專用設(shè)備行業(yè)直播電商戰(zhàn)略分析研究報告
- 未來五年剪刀類似品行業(yè)直播電商戰(zhàn)略分析研究報告
- 解聘合同范本簡單版圖
- 婚宴廳入股合同范本
- 古箏大撮課件
- 戶外護欄銷售合同范本
- 代碼安全審計培訓(xùn)大綱課件
- XJJ 068-2014 民用建筑電氣防火設(shè)計規(guī)程
- 質(zhì)檢員安全培訓(xùn)課件
- 科研項目進度管理與質(zhì)量控制
- 《信息系統(tǒng)安全》課程教學(xué)大綱
- 民族學(xué)概論課件
- 新產(chǎn)品開發(fā)項目進度計劃表
- 2024年湖南石油化工職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案
- 2020年科學(xué)通史章節(jié)檢測答案
- 長期臥床患者健康宣教
- 穿刺的并發(fā)癥護理
評論
0/150
提交評論