朔州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第1頁
朔州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第2頁
朔州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第3頁
朔州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第4頁
朔州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

朔州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題一、中考數(shù)學(xué)幾何綜合壓軸題1.在中,,過點(diǎn)作直線,將繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對應(yīng)點(diǎn)分別是),射線分別交直線于點(diǎn).(1)問題發(fā)現(xiàn):如圖1所示,若與重合,則的度數(shù)為_________________(2)類比探究:如圖2,所示,設(shè)與的交點(diǎn)為M,當(dāng)M為中點(diǎn)時(shí),求線段的長;(3)拓展延伸:在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)分別在的延長線上時(shí),試探究四邊形的面積是否存在最小值,若存在,直接寫出四邊形的最小面積;若不存在,請說明理由解析:(1)60°;(2);(3)存在,【分析】(1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;(2)根據(jù)M為A'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到PB=,依據(jù)tan∠BQC=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.【詳解】解(1)由旋轉(zhuǎn)得:,,,,,,;(2)因?yàn)镸是中點(diǎn),所以,,,,.∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,,,;(3),最小,即最小,,取PQ的中點(diǎn)G,,即PQ=2CG,當(dāng)最小時(shí),最小,,與重合,最小,∵的最小值為,.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),解直角三角形以及直角三角形的性質(zhì)的綜合運(yùn)用,解題時(shí)注意:旋轉(zhuǎn)變換中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2.如圖,在菱形中,,將邊繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,記旋轉(zhuǎn)角為.過點(diǎn)作于點(diǎn),過點(diǎn)作直線于點(diǎn),連接.(探索發(fā)現(xiàn))填空:當(dāng)時(shí),=.的值是(驗(yàn)證猜想)當(dāng)時(shí),中的結(jié)論是否仍然成立?若成立,請僅就圖的情形進(jìn)行證明;若不成立,請說明理由;(拓展應(yīng)用)在的條件下,若,當(dāng)是等腰直角三角形時(shí),請直接寫出線段的長.解析:(1),;(2)當(dāng)時(shí),(1)中的結(jié)論仍然成立,理由見解析;(3)線段的長為或.【分析】當(dāng)時(shí),點(diǎn)B′與點(diǎn)C重合,,由四邊形ABCD為菱形,可求∠ABE=90°,由,可求∠ABC=60°,=30°,由DF⊥BC,DC∥AB,∠FDC=∠EBC=30°,由sin∠FDC=sin∠EBC=,可得CF=CE,可求∠CEF=∠FDC=30°即可;當(dāng)時(shí),中的結(jié)論仍然成立.先求,再證.最后證即可;連接,交于點(diǎn).先求,..分兩種情況:如圖先求,再證△B′BD∽△EBF,可得,如圖先求.再證△B′BD∽△EBF,.【詳解】當(dāng)時(shí),點(diǎn)B′與點(diǎn)C重合,∵,四邊形ABCD為菱形,CD∥AB,∴⊥AB,∴∠ABE=90°,∵,AD∥BC,∴∠ABC=180°-∠BAD=180°-120°=60°,∴=∠ABE-∠ABC=90°-60°=30°,∵DF⊥BC,DC∥AB,∴DF⊥AD,∠CDA=180°-∠BAD=60°,∴∠FDC=90°-∠CDA=30°,∠FCD=90°-∠FDC=60°,∴∠FDC=∠EBC=30°,∴sin∠FDC=sin∠EBC=,∵DC=BC,∴CF=CE,∴∠CFE=∠CEF=∠FCD=30°,∴∠CEF=∠FDC=30°,∴DF=FE,∵cos∠FDC=,∴=,故答案為,.當(dāng)時(shí),中的結(jié)論仍然成立.證明:如圖,連接.,,.,...,即.,,..,線段的長為或.連接,交于點(diǎn).,,,,∵DE=BE,∠DEB=90°,∴∠EDB=∠EBD=45°,.,∠B′EB=90°,,.,..分兩種情況:如圖,,∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.如圖,.∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.綜上所述,線段的長為或.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),掌握圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì)是解題關(guān)鍵.3.[初步嘗試](1)如圖①,在三角形紙片ABC中,∠ACB=90°,將△ABC折疊,使點(diǎn)B與點(diǎn)C重合,折痕為MN,則AM與BM的數(shù)量關(guān)系為;[思考說理](2)如圖②,在三角形紙片ABC中,AC=BC=6,AB=10,將△ABC折疊,使點(diǎn)B與點(diǎn)C重合,折痕為MN,求的值;[拓展延伸](3)如圖③,在三角形紙片ABC中,AB=9,BC=6,∠ACB=2∠A,將△ABC沿過頂點(diǎn)C的直線折疊,使點(diǎn)B落在邊AC上的點(diǎn)B′處,折痕為CM.①求線段AC的長;②若點(diǎn)O是邊AC的中點(diǎn),點(diǎn)P為線段OB′上的一個(gè)動(dòng)點(diǎn),將△APM沿PM折疊得到△A′PM,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,A′M與CP交于點(diǎn)F,求的取值范圍.解析:(1)AM=BM;(2);(3)①AC=;②≤≤.【分析】(1)利用平行線分線段成比例定理解決問題即可.(2)利用相似三角形的性質(zhì)求出BM,AM即可.(3)①證明△BCM∽△BAC,推出由此即可解決問題.②證明△PFA′∽△MFC,推出,因?yàn)镃M=5,推出即可解決問題.【詳解】解:(1)如圖①中,∵△ABC折疊,使點(diǎn)B與點(diǎn)C重合,折痕為MN,∴MN垂直平分線段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案為:AM=BM.(2)如圖②中,∵CA=CB=6,∴∠A=∠B,由題意MN垂直平分線段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴,∴,∴BM=,∴AM=AB﹣BM=10﹣,∴;(3)①如圖③中,由折疊的性質(zhì)可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴∴,∴BM=4,∴AM=CM=5,∴,∴AC=.②如圖③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴,∵CM=5,∴,∵點(diǎn)P在線段OB上運(yùn)動(dòng),OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了相似三角形的判定和性質(zhì),解直角三角形,等腰三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.4.(了解概念)定義:在平面直角坐標(biāo)系中,組成圖形的各點(diǎn)中,與點(diǎn)Р所連線段最短的點(diǎn)叫做點(diǎn)Р關(guān)于這個(gè)圖形的短距點(diǎn),這條最短線段的長度叫做點(diǎn)Р到這個(gè)圖形的短距.(理解運(yùn)用)(1)已知點(diǎn),以原點(diǎn)為圓心,l為半徑作,則點(diǎn)Р關(guān)于的短距點(diǎn)的坐標(biāo)是;(2)如圖,點(diǎn),等邊三角形OAB的頂點(diǎn)A的坐標(biāo)為,頂點(diǎn)B在第一象限,判斷點(diǎn)Р關(guān)于的短距點(diǎn)的個(gè)數(shù),并說明理由;(拓展提升)(3)已知,,,點(diǎn)C在第一象限內(nèi),且,,若點(diǎn)Р到四邊形OACB的短距大于2,請直接寫出的取值范圍.解析:(1)(-1,0);(2)點(diǎn)Р關(guān)于的短距點(diǎn)的個(gè)數(shù)有3個(gè);(3)當(dāng)p<-或2<p<4或p>6+時(shí),點(diǎn)Р到四邊形OACB的短距大于2.【分析】(1)連接PO,交于點(diǎn)M,點(diǎn)M即是點(diǎn)Р關(guān)于的短距點(diǎn),進(jìn)而即可求解;(2)根據(jù)題意得點(diǎn)P是三角形OAB的中心,進(jìn)而即可求解;(3)由題意得點(diǎn)P,A,B在直線y=-x+6上,以點(diǎn)P為圓心,半徑長為2畫圓,分3種情況:①當(dāng)點(diǎn)P在AB的延長線上,圓P過點(diǎn)B時(shí),②當(dāng)點(diǎn)P在線段AB上,圓P與BC相切于點(diǎn)N,過點(diǎn)P作PM⊥y軸,③當(dāng)點(diǎn)P在BA的延長線上,圓P過點(diǎn)A時(shí),過點(diǎn)P作PM⊥y軸,分別求解,即可得到答案.【詳解】解:(1)連接PO,交于點(diǎn)M,點(diǎn)M即是點(diǎn)Р關(guān)于的短距點(diǎn),∵,、的半徑為1,∴M(-1,0),故答案是:(-1,0);(2)∵點(diǎn),等邊三角形OAB的頂點(diǎn)A的坐標(biāo)為,∴點(diǎn)P是三角形OAB的中心,∴點(diǎn)P到OA,OB,OC的三條垂線段最短,三條垂線段都等于,∴點(diǎn)Р關(guān)于的短距點(diǎn)的個(gè)數(shù)有3個(gè);(3)∵,,,∴點(diǎn)P,A,B在直線y=-x+6上,∴∠ABO=∠BAO=45°,∵點(diǎn)C在第一象限內(nèi),且,,∴∠ABC=75°-45°=30°,以點(diǎn)P為圓心,半徑長為2畫圓,如圖所示:當(dāng)點(diǎn)P在AB的延長線上,圓P過點(diǎn)B時(shí),過點(diǎn)P作PM⊥y軸,∵PB=2,∠PBM=45°,∴PM=2×=,∴p<-時(shí),點(diǎn)Р到四邊形OACB的短距大于2;①當(dāng)點(diǎn)P在線段AB上,圓P與BC相切于點(diǎn)N,過點(diǎn)P作PM⊥y軸,則BP=2PN=2×2=4,PM=BP×=2,②當(dāng)點(diǎn)P在線段AB上,圓P與OA相切于點(diǎn)N,過點(diǎn)P作PM⊥y軸,則AP=PN=2,BP=AB-AP=6-2=4,PM=BP×=4×=4,∴2<p<4時(shí),點(diǎn)Р到四邊形OACB的短距大于2;③當(dāng)點(diǎn)P在BA的延長線上,圓P過點(diǎn)A時(shí),過點(diǎn)P作PM⊥y軸,則PM=(6+2)×=6+,∴p>6+時(shí),點(diǎn)Р到四邊形OACB的短距大于2;綜上所述:當(dāng)p<-或2<p<4或p>6+時(shí),點(diǎn)Р到四邊形OACB的短距大于2.【點(diǎn)睛】本題主要考查圖形與坐標(biāo)以及圓的綜合題,根據(jù)題意畫出圖形,掌握圓與直線相切的性質(zhì)是解題的關(guān)鍵.5.在中,點(diǎn)D,E分別是邊上的點(diǎn),.基礎(chǔ)理解:(1)如圖1,若,求的值;證明與拓展:(2)如圖2,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)a度,得到,連接;①求證:;②如圖3,若在旋轉(zhuǎn)的過程中,點(diǎn)恰好落在上時(shí),連接,則的面積為________.解析:(1);(2)①見詳解;②13.44【分析】(1)利用平行線分線段定理,直接求解即可;、(2)①先推出,從而得,進(jìn)而即可得到結(jié)論;②先推出AE=AE1=8,DE=D1E1=10,過點(diǎn)A作AM⊥DE于點(diǎn)M,則DM=3.6,D1E=2.8,再證明∠D1EE1=90°,進(jìn)而即可求解.【詳解】解:(1)∵,,∴=;(2)①∵將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)a度,得到,∴=AD,=AE,∠BAD1=∠CAE1,∵,∴,即,∴,∴,∴;②由①可知,∴,∵將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到,點(diǎn)恰好落在上,∴AD1=AD=6,∠D1AE1=∠DAE=90°,∴AE=AE1=AD1=8,DE=D1E1=,過點(diǎn)A作AM⊥DE于點(diǎn)M,則DM=D1M=AD×cos∠ADE=AD×=6×=3.6,∴D1E=10-3.6×2=2.8,∵∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,又∵AD1=AD,AE=AE1,∴∠ADE=,∴∠AED+=∠AED+∠ADE=90°,即:∠D1EE1=90°,∴,∴的面積=D1E?EE1=×2.8×9.6=13.44.故答案是:13.44.【點(diǎn)睛】本題主要考查相似三角形的判定和性質(zhì),解直角三角形,勾股定理,平行線分線段成比例定理,旋轉(zhuǎn)的性質(zhì),熟練掌握相似三角形的判定和性質(zhì),是解題的關(guān)鍵.6.如圖,分別為中上的動(dòng)點(diǎn)(點(diǎn)除外),連接交于點(diǎn)P,.我們約定:線段所對的,稱為線段的張角.情景發(fā)現(xiàn)(1)已知三角形是等邊三角形,,①求線段的張角的度數(shù);②求點(diǎn)P到的最大距離;③若點(diǎn)P的運(yùn)動(dòng)路線的長度稱為點(diǎn)P的路徑長,求點(diǎn)P的路徑長.拓展探究(2)在(1)中,已知是圓P的外切三角形,若點(diǎn)的運(yùn)動(dòng)路線的長度稱為點(diǎn)的路徑長,試探究點(diǎn)的路徑長與點(diǎn)P的路徑長之間有何關(guān)系?請通過計(jì)算說明.解析:(1)①120°,②點(diǎn)P到的最大距離,③;(2)點(diǎn)的路徑長與點(diǎn)P的路徑長的比值是2:1(或點(diǎn)的路徑長是點(diǎn)P的路徑長的2倍).【分析】(1)①利用等邊三角形的性質(zhì)證△AEB與△BCF全等,得到∠EBA=∠BCF,利用三角形的內(nèi)角和定理即可求出∠CPB的度數(shù);②由題意可知當(dāng)PO⊥BC于點(diǎn)N時(shí),點(diǎn)P到BC的距離最大,根據(jù)垂徑定理及三角函數(shù)即可求出點(diǎn)P到BC的最大距離;③由題意知點(diǎn)P的路徑長為弧BC的長,在②的基礎(chǔ)上直接利用公式即可求出結(jié)果;(2)由題意可知張角∠CPB的度數(shù)始終為120°,可得∠CBP+∠BCP=60°,因?yàn)閳AP是△A'BC的內(nèi)切圓,由此可推出A'是等邊三角形ABC外接圓上優(yōu)弧BAC上的一動(dòng)點(diǎn),其半徑為2,圓心角240°,根據(jù)弧長公式可直接求出其長度,并計(jì)算出點(diǎn)A'的路徑長是點(diǎn)P的路徑長的2倍.【詳解】解:(1)①∵是等邊三角形,∴,∵,∴,∴.∵,∴,.②(2)如圖所示,由于始終為,故過點(diǎn)作圓O,∴.當(dāng)于點(diǎn)N時(shí),點(diǎn)P到的距離最大.∵,∴,∴,∴點(diǎn)P到的最大距離.③由②可知點(diǎn)P的路徑為的長度,即(2)點(diǎn)的路徑長與點(diǎn)P的路徑長的比值是(或點(diǎn)的路徑長是點(diǎn)P的路徑長的2倍),理由:由(1)中題意可知張角的度數(shù)始終為,可得,又因?yàn)閳AP是的內(nèi)切圓,所以,所以,所以是等邊三角形外接圓上優(yōu)弧上的一動(dòng)點(diǎn),由題意可得等邊三角形外接圓的半徑為,點(diǎn)的路徑是優(yōu)弧的長度,即以的圓心角,半徑為的弧長,如圖,所以點(diǎn)的路徑長=,點(diǎn)的路徑長與點(diǎn)P的路徑長的比值是:,所以點(diǎn)的路徑長與點(diǎn)P的路徑長的比值是2:1(或點(diǎn)的路徑長是點(diǎn)P的路徑長的2倍).【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),圓的有關(guān)性質(zhì),弧長公式等,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形.7.(問題情境)如圖1,點(diǎn)E是平行四邊形ABCD的邊AD上一點(diǎn),連接BE、CE.求證:S平行四邊形ABCD.(說明:S表示面積)請以“問題情境”為基礎(chǔ),繼續(xù)下面的探究(探究應(yīng)用1)如圖2,以平行四邊形ABCD的邊AD為直徑作⊙O,⊙O與BC邊相切于點(diǎn)H,與BD相交于點(diǎn)M.若AD=6,BD=y(tǒng),AM=x,試求y與x之間的函數(shù)關(guān)系式.(探究應(yīng)用2)如圖3,在圖1的基礎(chǔ)上,點(diǎn)F在CD上,連接AF、BF,AF與CE相交于點(diǎn)G,若AF=CE,求證:BG平分∠AGC.(遷移拓展)如圖4,平行四邊形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中點(diǎn),F(xiàn)在BC上,且BF:FC=2:1,過D分別作DG⊥AF于G,DH⊥CE于H,請直接寫出DG:DH的值.解析:【問題情境】見解析;【探究應(yīng)用1】;【探究應(yīng)用2】見解析;【遷移拓展】.【分析】(1)作EF⊥BC于F,則S△BCE=BC×EF,S平行四邊形ABCD=BC×EF,即可得出結(jié)論;(2)連接OH,由切線的性質(zhì)得出OH⊥BC,OH=AD=3,求出平行四邊形ABCD的面積=AD×OH=18,由圓周角定理得出AM⊥BD,得出△ABD的面積=BD×AM=平行四邊形的面積=9,即可得出結(jié)果;(3)作BM⊥AF于M,BN⊥CE于N,同圖1得:△ABF的面積=△BCE的面積=平行四邊形ABCD的面積,得出AF×BM=CE×BN,證出BM=BN,即可得出BG平分∠AGC.(4)作AP⊥BC于P,EQ⊥BC于Q,由平行四邊形的性質(zhì)得出∠ABP=60°,得出∠BAP=30°,設(shè)AB=4x,則BC=3x,由直角三角形的性質(zhì)得出BP=AB=2x,BQ=BE,AP=BP=2x,由已知得出BE=2x,BF=2x,得出BQ=x,EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF==2x,CE==x,連接DF、DE,由三角形的面積關(guān)系得出AF×DG=CE×DH,即可得出結(jié)果.【詳解】(1)證明:作EF⊥BC于F,如圖1所示:則S△BCE=BC×EF,S平行四邊形ABCD=BC×EF,∴.(2)解:連接OH,如圖2所示:∵⊙O與BC邊相切于點(diǎn)H,∴OH⊥BC,OH=AD=3,∴平行四邊形ABCD的面積=AD×OH=6×3=18,∵AD是⊙O的直徑,∴∠AMD=90°,∴AM⊥BD,∴△ABD的面積=BD×AM=平行四邊形的面積=9,即xy=9,∴y與x之間的函數(shù)關(guān)系式y(tǒng)=;(3)證明:作BM⊥AF于M,BN⊥CE于N,如圖3所示:同圖1得:△ABF的面積=△BCE的面積=平行四邊形ABCD的面積,∴AF×BM=CE×BN,∵AF=CE,∴BM=BN,∴BG平分∠AGC.(4)解:作AP⊥BC于P,EQ⊥BC于Q,如圖4所示:∵平行四邊形ABCD中,AB:BC=4:3,∠ABC=120°,∴∠ABP=60°,∴∠BAP=30°,設(shè)AB=4x,則BC=3x,∴BP=AB=2x,BQ=BE,AP=BP=2x,∵E是AB的中點(diǎn),F(xiàn)在BC上,且BF:FC=2:1,∴BE=2x,BF=2x,∴BQ=x,∴EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理得:AF==2x,CE==x,連接DF、DE,則△CDE的面積=△ADF的面積=平行四邊形ABCD的面積,∴AF×DG=CE×DH,∴DG:DH=CE:AF=.【點(diǎn)睛】本題是圓的綜合題目,考查了圓周角定理、平行四邊形的性質(zhì)、三角形面積公式、含30°角的直角三角形的性質(zhì)、勾股定理、角平分線的判定等知識;本題綜合性強(qiáng),需要添加輔助線,熟練掌握平行四邊形的性質(zhì)和勾股定理是解題的關(guān)鍵.8.觀察猜想:(1)如圖1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點(diǎn)D與點(diǎn)C重合,點(diǎn)E在斜邊AB上,連接DE,且DE=AE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接EF,則=______,sin∠ADE=________,探究證明:(2)在(1)中,如果將點(diǎn)D沿CA方向移動(dòng),使CD=AC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.拓展延伸(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=a,點(diǎn)D在邊AC的延長線上,E是AB上任意一點(diǎn),連接DE.ED=nAE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)90°至點(diǎn)F,連接EF.求和sin∠ADE的值分別是多少?(請用含有n,a的式子表示)解析:(1);;(2)不變;(3)=;sin∠ADE=.【分析】(1)由等腰三角形的性質(zhì)和等邊三角形的判定得到∠A=∠ACE=30°,△BEC是等邊三角形,據(jù)此求得CE的長度,根據(jù)等腰直角三角形的性質(zhì)來求EF的長度,易得答案;(2)不變.理由:如圖2,過點(diǎn)D作DG∥BC交AB于點(diǎn)G,構(gòu)造直角三角形:△ADG,結(jié)合含30度角的直角三角形的性質(zhì)和銳角三角函數(shù)的定義,結(jié)合方程求得答案;(3)如圖3,過點(diǎn)E作EG⊥AD于點(diǎn)G,構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的定義列出方程并解答.【詳解】(1)如圖1,∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠B=60°.又CE=AE,∴∠ACE=∠A=30°,∴∠BCE=60°,∴△BEC是等邊三角形,∴BE=CE.∴AE=CE=BE.∴AD=AB=CE.又由旋轉(zhuǎn)的性質(zhì)知:FC=EC,∠FCE=90°,∴EF=CE,∴==.∵∠ADE=30°,∴sin∠ADE=.故答案是:;;(2)不變,理由:如圖2,過點(diǎn)D作DG∥BC交AB于點(diǎn)G,則△ADG是直角三角形.∵∠DAG=30°,DE=AE,設(shè)DG=x,∴∠AED=30°,AD=x,∠DEG=∠DGE=60°.∴DE=DF=x,sin∠ADE=.∵∠EDF=90°,∴EF=x.∴==.∵∠ADE=30°,∴sin∠ADE=.(3)過點(diǎn)E作EG⊥AD于點(diǎn)G,設(shè)AE=x,則DE=nx.∵∠CAB=a,∴AG=cosα?x,EG=sinα?x.∴DG==?x.∴AD=cosα?x+?x.∵∠EDF=90°,DE=DF,∴EF=DE=nx.∴==,sin∠ADE===.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)和等邊三角形的判定,作輔助線構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的定義求解.9.(基礎(chǔ)鞏固)(1)如圖1,在中,M是的中點(diǎn),過B作,交的延長線于點(diǎn)D.求證:;(嘗試應(yīng)用)(2)在(1)的情況下載線段上取點(diǎn)E(如圖2),已知,,,求;(拓展提高)(3)如圖3,菱形中,點(diǎn)P在對角線上,且,點(diǎn)E為線段上一點(diǎn),.若,,求菱形的邊長.解析:(1)證明見解析;(2);(3).【分析】(1)證明,即可求解;(2)過點(diǎn)B作于點(diǎn)H,得到,進(jìn)而求解;(3)延長交于G,交延長線于F,連結(jié),可得,所以,設(shè)菱形邊長為,進(jìn)而可得出結(jié)論.【詳解】解:(1)證明:,,,是的中點(diǎn),,,.(2)由(1)得,,作,垂足為H,如圖所示:,在中,,.(3)延長交于G,交延長線于F,連結(jié),如圖所示:過作于由,,設(shè)菱形邊長為,在和中,即,解得(舍負(fù)),菱形的邊長為.【點(diǎn)睛】本題考查四邊形綜合題,主要考查了菱形的性質(zhì)、相似三角形的判定與性質(zhì),解直角三角形、勾股定理的運(yùn)用,正確作出輔助線是解題的關(guān)鍵.10.綜合與實(shí)踐如圖①,在中中,,,,過點(diǎn)作于,將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為.(1)問題發(fā)現(xiàn)如圖②,當(dāng)時(shí),__________;如圖③,當(dāng)時(shí),__________.(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖④的情形給出證明.(3)問題解決如圖⑤,當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至點(diǎn)落在邊上時(shí),求線段的長.解析:(1),;(2)無變化,理由詳見解析;(3).【分析】(1)首先利用勾股定理可求出AB的值,再根據(jù)三角形面積求出CD的值,再次利用勾股定理求出AD、BD的值,再分情況進(jìn)一步得出的值即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出,,再證明即可得出結(jié)論;(3)過點(diǎn)作于,證,推出,得出,繼而得到,再根據(jù),即可得出答案.【詳解】解:(1)∵,,∴∵∴∴當(dāng)時(shí),∴當(dāng)時(shí),∴故答案為:;;(2)無變化.證明:∵在中,,,,∴.∵,∴.∵,,∴.∴,即.∴,.∴.由旋轉(zhuǎn)可知,,.∴.∵,∴.∴.∴.(3)如圖,過點(diǎn)作于.∵,∴.∵,,∴.∴,即.∴.∴.∴.∵,∴.【點(diǎn)睛】本題考查了勾股定理、三角形的面積公式、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定及性質(zhì)等多個(gè)知識點(diǎn),綜合性較強(qiáng),要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,會利用相似三角形的性質(zhì)解題,此題結(jié)構(gòu)精巧,考查范圍廣.11.在中,,,是邊上一點(diǎn),將沿折疊得到,連接.(1)特例發(fā)現(xiàn):如圖1,當(dāng),落在直線上時(shí),①求證:;②填空:的值為______;(2)類比探究:如圖2,當(dāng),與邊相交時(shí),在上取一點(diǎn),使,交于點(diǎn).探究的值(用含的式子表示),并寫出探究過程;(3)拓展運(yùn)用:在(2)的條件下,當(dāng),是的中點(diǎn)時(shí),若,求的長.解析:(1)①見解析;②1;(2),見解析;(3)【分析】(1)①根據(jù)折疊性質(zhì)證明即可;②當(dāng),證明,即可得出的值;(2)延長交于點(diǎn),根據(jù)折疊性質(zhì)證明,即可得出結(jié)論;(3)由(2)可知,設(shè),則,,,可得,再由勾股定理列方程求解即可.【詳解】解:(1)①證明:延長交于點(diǎn).由折疊得.∴.∵,∴.②當(dāng),即時(shí),可知AC=BC,在和中,,∴(AAS),∴,∴.故答案為:1;(2)解:.理由:延長交于點(diǎn),由折疊得.∴,∵,∴,∵,∴,∴.(3)解:由折疊得,,∵是的中點(diǎn),∴,∴,,,由(2)知,∴,,是的中點(diǎn),∴,∴,設(shè),則,,,∴,∴,∴,,∴,在中,由勾股定理得,∵,∴,解得(負(fù)值舍去),∴.【點(diǎn)睛】本題為三角形綜合題,考查折疊的性質(zhì),全等三角形判定與性質(zhì),相似三角形的判定及性質(zhì),勾股定理等知識點(diǎn),根據(jù)折疊性質(zhì)找到角度之間的關(guān)系是解題的關(guān)鍵.12.(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點(diǎn).填空:①的值為______;②的度數(shù)為______.(2)類比探究如圖2,在和中,,,連接交的延長線于點(diǎn).請判斷的值及的度數(shù),并說明理由;(3)拓展延伸在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn),若,,請直接寫出當(dāng)點(diǎn)與點(diǎn)在同一條直線上時(shí)的長.解析:(1)①1;②;(2),.理由見解析;(3)2或4.【分析】(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;②由△COA≌△DOB,得∠CAO=∠DBO,然后根據(jù)三角形的內(nèi)角和定理先求∠OAB+∠OBA的值,再求∠AMB的值即可;(2)根據(jù)銳角三角比可得,根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,根據(jù)相似撒尿性的性質(zhì)求解即可;(3)當(dāng)點(diǎn)與點(diǎn)在同一條直線上,有兩種情況:如圖3和圖4,然后根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理,可得AD的長.【詳解】(1)①∵,∴∠BOD=∠AOC,又∵,,∴△BOD≌△AOC,∴BD=AC,∴=1;②∵,∴∠OAB+∠OBA=140°,∵△BOD≌△AOC,∴∠CAO=∠DBO,∴∠CAO+∠OAB+∠ABM=∠DBO+∠OAB+∠ABM=∠OAB+∠OBA=140°,∴∠AMB=;(2)如圖2,,.理由如下:中,,,,同理得:,,,,,,∠CAO=∠DBO,∵∠BEO+∠DBO=90°,∴∠CAE+∠AEM=90°,∴∠AMB=90°;(3)∵∠A=30°,,∴OA==3.如圖3,當(dāng)點(diǎn)D和點(diǎn)A在點(diǎn)O的同側(cè)時(shí),∵,∴AD=3-2=2;如圖4,當(dāng)點(diǎn)D和點(diǎn)A在點(diǎn)O的兩側(cè)時(shí),∵,,OA=3∴AD=3+1=4.綜上可知,AD的長是2或4.【點(diǎn)睛】本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,相似三角形的判定與性質(zhì),解直角三角形,旋轉(zhuǎn)的性質(zhì),以及分類討論的數(shù)學(xué)思想,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運(yùn)用類比的思想解決問題,本題是一道比較好的題目.13.如圖1,在中,,,點(diǎn)分別是的中點(diǎn),連接.(1)探索發(fā)現(xiàn):圖1圖2圖3圖1中,的值為_____________;的值為_________;(2)拓展探究若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化,請僅就圖2的情形給出證明;(3)問題解決當(dāng)旋轉(zhuǎn)至三點(diǎn)在同一直線時(shí),直接寫出線段的長.解析:(1);(2)見解析(3)或【分析】(1)先判斷出∠AEB=90°,再判斷出∠B=30°,進(jìn)而的粗AE,再用勾股定理求出BE,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出△ACD∽△BCE,即可得出結(jié)論;(3)分點(diǎn)D在線段AE上和AE的延長線上,利用含30度角的直角三角形的性質(zhì)和勾股定理,最后用線段的和差求出AD,即可得出結(jié)論.【詳解】解:解:(1)如圖1,連接AE,∵AB=AC=2,點(diǎn)E分別是BC的中點(diǎn),∴AE⊥BC,∴∠AEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根據(jù)勾股定理得,BE∵點(diǎn)E是BC的中點(diǎn),∴BC=2BE∴∵點(diǎn)D是AC的中點(diǎn),∴AD=CD=AC=1,∴故答案為:,;(2)無變化,理由:由(1)知,CD=1,,∴,∴,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)線段BE的長為或,理由如下:當(dāng)點(diǎn)D在線段AE上時(shí),如圖2,過點(diǎn)C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴,∴,在Rt△AFC中,AC=2,根據(jù)勾股定理得,,∴AD=AF+DF=,由(2)知,,∴當(dāng)點(diǎn)D在線段AE的延長線上時(shí),如圖3,過點(diǎn)C作CG⊥AD交AD的延長線于G,∵∠CDG=60°,∴∠DCG=30°,∴,∴,在Rt△ACG中,根據(jù)勾股定理得,,∴,由(2)知,,∴即:線段BE的長為或.【點(diǎn)睛】此題是相似形綜合題,主要考查了等腰三角形的性質(zhì),含30度角的直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),構(gòu)造出直角三角形是解本題的關(guān)鍵.14.如圖1,邊長為4的正方形與邊長為的正方形的頂點(diǎn)重合,點(diǎn)在對角線上.問題發(fā)現(xiàn)(1)如圖1,與的數(shù)量關(guān)系為______.類比探究(2)如圖2,將正方形繞點(diǎn)旋轉(zhuǎn)度().請問(1)中的結(jié)論還成立嗎?若不成立,請說明理由.拓展延伸(3)若為的中點(diǎn),在正方形的旋轉(zhuǎn)過程中,當(dāng)點(diǎn),,在一條直線上時(shí),線段的長度為______.解析:(1);(2)成立,見解析;(3)或【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,,,GH=HF=HE=HC,得出,,,由勾股定理求出,即可得出答案.【詳解】[問題發(fā)現(xiàn)]解:,理由如下:∵四邊形ABCD和四邊形CFEG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=CF,CE⊥GF,∴AB∥EF,∴,;故答案為:;[類比探究]解:上述結(jié)論還成立,理由如下:連接CE,如圖2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,,,∴△ACE∽△BCF,,;[拓展延伸]解:分兩種情況:①如圖3所示:連接CE交GF于H,∵四邊形ABCD和四邊形CFEG是正方形,∴AB=BC=4,AC=AB=4,GF=CE=CF,HF=HE=HC,∵點(diǎn)F為BC的中點(diǎn),∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴,∴;②如圖4所示:連接CE交GF于H,同①得:GH=HF=HE=HC=,∴,∴;故答案為:或.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.15.如圖1,在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn),連接.將繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當(dāng)時(shí),;②當(dāng)時(shí),;(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決當(dāng)旋轉(zhuǎn)至?xí)r,請直接寫出的長.解析:(1)①;②;(2)不變,證明見解析;(3)2或2【分析】(1)①當(dāng)=0°時(shí),在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點(diǎn)D、E分別是邊BC、AC的中點(diǎn),分別求出AE、BD的大小,即可求出BD、AE的比值;②中,圖形如下,與①有所變化,但求解方法完全相同;(2)證明△ECA∽△DCB,從而根據(jù)邊長成比例得出比值;(3)存在2種情況,一種是當(dāng)時(shí),;另一種是當(dāng)時(shí),,分別利用勾股定理可求得.【詳解】(1)①∵在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn)∴CD=BD=2,在Rt△ABC中,AB=,AC=∴AE=∴;②圖形如下:同理可知:BC=4,AC=,DC=2,DE=,CE=∴BD=DC+CB=2+4=6,AE=EC+AC==∴;(2)不變,理由如下∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴;(3)情況一:當(dāng)時(shí),,圖形如下,過點(diǎn)D作BC的垂線,交BC延長線于點(diǎn)F∵ED∥AC,∴∠ACD=∠EDC=90°∵∠ACB=∠ECD=30°∴∠ECF=30°,∴∠FCD=60°∵CD=2∴在Rt△DCF中,CF=1,F(xiàn)D=∴FB=FC=CB=1+4=5∴在Rt△FDB中,DB=2;情況二:當(dāng)時(shí),,圖形如下,過點(diǎn)D作BC的垂線,交BC于點(diǎn)F∵DE∥AC,∴∠ACD=90°∵∠ACB=30°,∴∠DCF=60°∵CD=2,∴在Rt△CDF中,CF=1,DF=∴FB=CB-CF=4-1=3∴在Rt△FDB中,DB=2綜上得:DB的長為2或2.【點(diǎn)睛】此題屬于旋轉(zhuǎn)的綜合題.考查了旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.16.(1)方法選擇如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.小穎認(rèn)為可用截長法證明:在上截取,連接…小軍認(rèn)為可用補(bǔ)短法證明:延長至點(diǎn),使得…請你選擇一種方法證明.(2)類比探究(探究1)如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.(探究2)如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.(3)拓展猜想如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.解析:(1)方法選擇:證明見解析;(2)【探究1】:;【探究2】;(3)拓展猜想:.【分析】(1)方法選擇:根據(jù)等邊三角形的性質(zhì)得到∠ACB=∠ABC=60°,如圖①,在BD上截取DM=AD,連接AM,由圓周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根據(jù)全等三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(2)類比探究:如圖②,由BC是⊙O的直徑,得到∠BAC=90°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABC=∠ACB=45°,過A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根據(jù)全等三角形的性質(zhì)得到結(jié)論;【探究2】如圖③,根據(jù)圓周角定理和三角形的內(nèi)角和得到∠BAC=90°,∠ACB=60°,過A作AM⊥AD交BD于M,求得∠AMD=30°,根據(jù)直角三角形的性質(zhì)得到MD=2AD,根據(jù)相似三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(3)如圖④,由BC是⊙O的直徑,得到∠BAC=90°,過A作AM⊥AD交BD于M,求得∠MAD=90°,根據(jù)相似三角形的性質(zhì)得到BM=CD,DM=AD,于是得到結(jié)論.【詳解】(1)方法選擇:∵,∴,如圖①,在上截取,連接,∵,∴是等邊三角形,∴,∵,∵,∴,∴,∴;(2)類比探究:如圖②,∵是的直徑,∴,∵,∴,過作交于,∵,∴是等腰直角三角形,∴,,∴,∴,∵,∴,∴,∴;[探究2]如圖③,∵若是的直徑,,∴,,過作交于,∵,∴,∴,∵,,∴,∴,∴,∴;故答案為;(3)拓展猜想:;理由:如圖④,∵若是的直徑,∴,過作交于,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴.故答案為.【點(diǎn)睛】本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.17.(問題)如圖1,在中,,過點(diǎn)作直線平行于.,點(diǎn)在直線上移動(dòng),角的一邊始終經(jīng)過點(diǎn),另一邊與交于點(diǎn),研究和的數(shù)量關(guān)系.(探究發(fā)現(xiàn))(1)如圖2,某數(shù)學(xué)興趣小組運(yùn)用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)移動(dòng)到使點(diǎn)與點(diǎn)重合時(shí),通過推理就可以得到,請寫出證明過程;(數(shù)學(xué)思考)(2)如圖3,若點(diǎn)是上的任意一點(diǎn)(不含端點(diǎn)),受(1)的啟發(fā),這個(gè)小組過點(diǎn)作交于點(diǎn),就可以證明,請完成證明過程;(拓展引申)(3)如圖4,在(1)的條件下,是邊上任意一點(diǎn)(不含端點(diǎn)),是射線上一點(diǎn),且,連接與交于點(diǎn),這個(gè)數(shù)學(xué)興趣小組經(jīng)過多次取點(diǎn)反復(fù)進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)點(diǎn)在某一位置時(shí)的值最大.若,請你直接寫出的最大值.解析:【探究發(fā)現(xiàn)】(1)見解析;【數(shù)學(xué)思考】(2)見解析;【拓展引申】(3)時(shí),有最大值為2.【分析】根據(jù)等腰三角形的性質(zhì)及平行的定義即可解得根據(jù)證明即可推出過點(diǎn)作交于點(diǎn),連接,可證明,再推出即可得=,則.【詳解】證明:【探究發(fā)現(xiàn)】(1)∵∴∵∴,且∴∴即【數(shù)學(xué)思考】(2)∵∴∴,∵∴,且,∴∴【拓展引申】(3)如圖4,過點(diǎn)作交于點(diǎn),連接,∵,∴∵∴∴∴,且∴∴∵,∴∴∴∴∴∵∴點(diǎn),點(diǎn),點(diǎn),點(diǎn)四點(diǎn)共圓,∴∴,且∴∴∴∴∴時(shí),有最大值為2.【點(diǎn)睛】本題考查等腰三角形,解題關(guān)鍵在于熟練掌握等腰三角形的性質(zhì).18.在中,,.點(diǎn)D在邊上,且,交邊于點(diǎn)F,連接.(1)特例發(fā)現(xiàn):如圖1,當(dāng)時(shí),①求證:;②推斷:_________.;(2)探究證明:如圖2,當(dāng)時(shí),請?zhí)骄康亩葦?shù)是否為定值,并說明理由;(3)拓展運(yùn)用:如圖3,在(2)的條件下,當(dāng)時(shí),過點(diǎn)D作的垂線,交于點(diǎn)P,交于點(diǎn)K,若,求的長.解析:(1)①證明見解析,②;(2)為定值,證明見解析;(3)【分析】(1)①利用已知條件證明即可得到結(jié)論,②先證明利用相似三角形的性質(zhì)再證明結(jié)合相似三角形的性質(zhì)可得答案;(2)由(1)中②的解題思路可得結(jié)論;(3)設(shè)則利用等腰直角三角形的性質(zhì)分別表示:由表示再證明利用相似三角形的性質(zhì)建立方程求解,即可得到答案.【詳解】證明:(1)①②推斷:理由如下:(2)為定值,理由如下:由(1)得:(3),設(shè)則,解得:【點(diǎn)睛】本題考查的是三角形的全等的判定與性質(zhì),等腰直角三角形的性質(zhì),三角形相似的判定與性質(zhì),更重要的是考查學(xué)生的學(xué)習(xí)探究的能力,掌握以上知識是解題的關(guān)鍵.19.某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,對多邊形內(nèi)兩要互相垂直的線段做了如下探究:(觀察與猜想)(1)如圖1,在正方形中,點(diǎn),分別是,上的兩點(diǎn),連接,,,則的值為__________;(2)如圖2,在矩形中,,,點(diǎn)是上的一點(diǎn),連接,,且,則的值為__________;(類比探究)(3)如圖3,在四邊形中,,點(diǎn)為上一點(diǎn),連接,過點(diǎn)作的垂線交的延長線于點(diǎn),交的延長線于點(diǎn),求證:;(拓展延伸)(4)如圖4,在中,,,,將沿翻折,點(diǎn)落在點(diǎn)處得,點(diǎn),分別在邊,上,連接,,且.①求的值;②連接,若,直接寫出的長度.解析:(1)1;(2);(3)證明見解析;(4)①;②.【分析】(1)先根據(jù)正方形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論