版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
深圳大浪街道尚文學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.如圖,在中,,過點(diǎn)做射線,且,點(diǎn)從點(diǎn)出發(fā),沿射線方向均勻運(yùn)動(dòng),速度為;同時(shí),點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)勻速運(yùn)動(dòng),速度為,當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為.解答下列問題:(1)用含有的代數(shù)式表示和的長(zhǎng)度;(2)當(dāng)時(shí),請(qǐng)說明;(3)設(shè)的面積為,求與之間的關(guān)系式.解析:(1)CP=3t,BQ=8-t;(2)見解析;(3)S=16-2t.【解析】【分析】(1)直接根據(jù)距離=速度時(shí)間即可;(2)通過證明,得到∠PQC=∠BCQ,即可求證;(3)過點(diǎn)C作CM⊥AB,垂足為M,根據(jù)等腰直角三角形的性質(zhì)得到CM=AM=4,即可求解.【詳解】解:(1)CP=3t,BQ=8-t;(2)當(dāng)t=2時(shí),CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴∴∠PQC=∠BCQ∴PQ∥BC(3)過點(diǎn)C作CM⊥AB,垂足為M∵AC=BC,CM⊥AB∴AM=(cm)∵AC=BC,∠ACB=∴∠A=∠B=∵CM⊥AB∴∠AMC=∴∠ACM=∴∠A=∠ACM∴CM=AM=4(cm)∴因此,S與t之間的關(guān)系式為S=16-2t.【點(diǎn)睛】此題主要考查列代數(shù)式、全等三角形的判定與性質(zhì)、平行線的判定、等腰三角形的性質(zhì),熟練掌握邏輯推理是解題關(guān)鍵.2.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【解析】【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對(duì)的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.3.已知:MN∥PQ,點(diǎn)A,B分別在MN,PQ上,點(diǎn)C為MN,PQ之間的一點(diǎn),連接CA,CB.(1)如圖1,求證:∠C=∠MAC+∠PBC;(2)如圖2,AD,BD,AE,BE分別為∠MAC,∠PBC,∠CAN,∠CBQ的角平分線,求證:∠D+∠E=180°;(3)在(2)的條件下,如圖3,過點(diǎn)D作DA的垂線交PQ于點(diǎn)G,點(diǎn)F在PQ上,∠FDA=2∠FDB,F(xiàn)D的延長(zhǎng)線交EA的延長(zhǎng)線于點(diǎn)H,若3∠C=4∠E,猜想∠H與∠GDB的倍數(shù)關(guān)系并證明.解析:(1)見解析;(2)見解析;(3)猜想:∠H=3∠GDB,證明見解析.【解析】【分析】(1)作輔助線:過C作EF∥MN,根據(jù)平行的傳遞性可知這三條直線兩兩平行,由平行線的性質(zhì)得到內(nèi)錯(cuò)角相等∠MAC=∠ACF,∠BCF=∠PBC,再進(jìn)行角的加和即可得出結(jié)論;(2)根據(jù)角平分線線定理得知,利用平角為180°得到∠DAE=90°,同理得,再根據(jù)四邊形內(nèi)角和180°,得出結(jié)論;(3)由(1)(2)中的結(jié)論進(jìn)行等量代換得到3∠ADB=2∠E,并且兩角的和為180°,由此得到兩個(gè)角的度數(shù)分別為72°和108°,利用角的和與差得到∠HDA=36°,∠H=54°,由此得到倍數(shù)關(guān)系.【詳解】(1)如圖:過C作EF∥MN,∵M(jìn)N∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC.(2)∵AD,AE分別為∠MAC,∠CAN的角平分線,∴,∴,于是∠DAE=90°同理可得:,由(1)可得:∵.(3)猜想:∠H=3∠GDB.理由如下:由(1)可知:,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.【點(diǎn)睛】考查平行線中角度的關(guān)系,學(xué)生要熟悉掌握平行線的性質(zhì)以及角平分線定理,結(jié)合角的和與差進(jìn)行計(jì)算,本題的關(guān)鍵是平行線的性質(zhì).4.在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會(huì)利用一些變形技巧來簡(jiǎn)化式子,解答問題.材料一:在解決某些分式問題時(shí),倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡(jiǎn),以達(dá)到計(jì)算目的.例:已知:,求代數(shù)式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解決某些連等式問題時(shí),通??梢砸?yún)?shù)“k”,將連等式變成幾個(gè)值為k的等式,這樣就可以通過適當(dāng)變形解決問題.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)則根據(jù)材料回答問題:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.解析:(1)5;(2);(3)【解析】【分析】(1)仿照材料一,取倒數(shù),再約分,利用等式的性質(zhì)求解即可;(2)仿照材料二,設(shè)===k(k≠0),則a=5k,b=2k,c=3k,代入所求式子即可;(3)本題介紹兩種解法:解法一:(3)解法一:設(shè)===(k≠0),化簡(jiǎn)得:①,②,③,相加變形可得x、y、z的代入=中,可得k的值,從而得結(jié)論;解法二:取倒數(shù)得:==,拆項(xiàng)得,從而得x=,z=,代入已知可得結(jié)論.【詳解】解:(1)∵=,∴=4,∴x﹣1+=4,∴x+=5;(2)∵設(shè)===k(k≠0),則a=5k,b=2k,c=3k,∴===;(3)解法一:設(shè)===(k≠0),∴①,②,③,①+②+③得:2()=3k,=k④,④﹣①得:=k,④﹣②得:,④﹣③得:k,∴x=,y=,z=代入=中,得:=,,k=4,∴x=,y=,z=,∴xyz===;解法二:∵,∴,∴,∴,∴,將其代入中得:==,y=,∴x=,z==,∴xyz==.【點(diǎn)睛】本題考查了以新運(yùn)算的方式求一個(gè)式子的值,題目中涉及了求一個(gè)數(shù)的倒數(shù),約分,等式的基本性質(zhì),求代數(shù)式的值,解決本題的關(guān)鍵是正確理解新運(yùn)算的內(nèi)涵,確定一個(gè)數(shù)的倒數(shù)并能夠根據(jù)等式的基本性質(zhì)將原式變?yōu)槟軌蜻M(jìn)一步運(yùn)算的式子.5.小敏與同桌小穎在課下學(xué)習(xí)中遇到這樣一道數(shù)學(xué)題:“如圖(1),在等邊三角形中,點(diǎn)在上,點(diǎn)在的延長(zhǎng)線上,且,試確定線段與的大小關(guān)系,并說明理由”.小敏與小穎討論后,進(jìn)行了如下解答:(1)取特殊情況,探索討論:當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖(2),確定線段與的大小關(guān)系,請(qǐng)你寫出結(jié)論:_____(填“”,“”或“”),并說明理由.(2)特例啟發(fā),解答題目:解:題目中,與的大小關(guān)系是:_____(填“”,“”或“”).理由如下:如圖(3),過點(diǎn)作EF∥BC,交于點(diǎn).(請(qǐng)你將剩余的解答過程完成)(3)拓展結(jié)論,設(shè)計(jì)新題:在等邊三角形中,點(diǎn)在直線上,點(diǎn)在直線上,且,若△的邊長(zhǎng)為,,求的長(zhǎng)(請(qǐng)你畫出圖形,并直接寫出結(jié)果).解析:(1),理由詳見解析;(2),理由詳見解析;(3)3或1【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)、三線合一的性質(zhì)證明即可;(2)根據(jù)等邊三角形的性質(zhì),證明△≌△即可;(3)注意區(qū)分當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí)和當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí)兩種情況,不要遺漏.【詳解】解:(1),理由如下:,∵△是等邊三角形,,點(diǎn)為的中點(diǎn),,,,,,;故答案為:;(2),理由如下:如圖3:∵△為等邊三角形,且EF∥BC,,,;;,,,在△與△中,,∴△≌△(AAS),,∴△為等邊三角形,,.(3)①如圖4,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),過點(diǎn)作EF∥BC,交的延長(zhǎng)線于點(diǎn):則,;,;∵△為等邊三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△為等邊三角形,,,;②如圖5,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),過點(diǎn)作EF∥BC,交的延長(zhǎng)線于點(diǎn):類似上述解法,同理可證:,,.【點(diǎn)睛】本題考查等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì).熟練掌握等邊三角形的性質(zhì),構(gòu)造合適的全等三角形是解題的關(guān)鍵.6.如圖,在中,,,點(diǎn)D在邊BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)重合),連接AD,作,DE交邊AC于點(diǎn)E.(1)當(dāng)時(shí),,(2)當(dāng)DC等于多少時(shí),,請(qǐng)說明理由;(3)在點(diǎn)D的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出的度數(shù);若不可以,請(qǐng)說明理由.解析:(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當(dāng)AB=DC時(shí),利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當(dāng)DA=DE時(shí),求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當(dāng)AD=AE時(shí),∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時(shí)不符合;③當(dāng)EA=ED時(shí),求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當(dāng)時(shí),,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當(dāng)時(shí),∵,∴∴∵∴②當(dāng)時(shí),∵∴又∵∴∴點(diǎn)D與點(diǎn)B重合,不合題意.③當(dāng)時(shí),∴∵∴綜上所述,當(dāng)?shù)亩葦?shù)為或時(shí),是等腰三角形.【點(diǎn)睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.7.如圖1,我們定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫做互補(bǔ)等對(duì)邊四邊形.(1)如圖2,在等腰中,AE=BE,四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,求證:∠ABD=∠BAC=∠AEB.(2)如圖3,在非等腰中,若四邊形ABCD仍是互補(bǔ)等對(duì)邊四邊形,試問∠ABD=∠BAC=∠AEB是否仍然成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說明理由.解析:(1)見解析;(2)仍然成立,見解析【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和互補(bǔ)等對(duì)邊四邊形的定義可利用SAS證明△ABD≌△BAC,可得∠ADB=∠BCA,從而可推出∠ADB=∠BCA=90°,然后在△ABE中,根據(jù)三角形的內(nèi)角和定理和直角三角形的性質(zhì)可得∠ABD=∠AEB,進(jìn)一步可得結(jié)論;(2)如圖3所示:過點(diǎn)A、B分別作BD的延長(zhǎng)線與AC的垂線,垂足分別為G,F(xiàn),根據(jù)互補(bǔ)等對(duì)邊四邊形的定義可利用AAS證明△AGD≌△BFC,可得AG=BF,進(jìn)一步即可根據(jù)HL證明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互補(bǔ)等對(duì)邊四邊形的定義、平角的定義和四邊形的內(nèi)角和可得∠AEB+∠DHC=180°,進(jìn)而可得∠AEB=∠BHC,再根據(jù)三角形的外角性質(zhì)即可推出結(jié)論.【詳解】(1)證明:∵AE=BE,∴∠EAB=∠EBA,∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,∴AD=BC,在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA=(180°?∠AEB)=90°?∠AEB,∴∠ABD=90°?∠EAB=90°?(90°?∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)∠ABD=∠BAC=∠AEB仍然成立;理由如下:如圖3所示:過點(diǎn)A、B分別作BD的延長(zhǎng)線與AC的垂線,垂足分別為G,F(xiàn),∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+∠ADG=180°,∴∠BCA=∠ADG,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∠AGD=∠BFC,∠ADG=∠BCA,AD=BC∴△AGD≌△BFC(AAS),∴AG=BF,在Rt△ABG和Rt△BAF中,∴Rt△ABG≌Rt△BAF(HL),∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.【點(diǎn)睛】本題以新定義互補(bǔ)等對(duì)邊四邊形為載體,主要考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形的內(nèi)角和定理與三角形的外角性質(zhì)以及四邊形的內(nèi)角和等知識(shí),正確添加輔助線、熟練掌握上述知識(shí)是解題的關(guān)鍵.8.如圖,在中,,,點(diǎn)為內(nèi)一點(diǎn),且.(1)求證:;(2)若,為延長(zhǎng)線上的一點(diǎn),且.①求的度數(shù).②若點(diǎn)在上,且,請(qǐng)判斷、的數(shù)量關(guān)系,并說明理由.③若點(diǎn)為直線上一點(diǎn),且為等腰,直接寫出的度數(shù).解析:(1)證明見解析;(2)①;②,理由見解析;③7.5°或15°或82.5°或150°【解析】【分析】(1)利用線段的垂直平分線的性質(zhì)即可證明;(2)①利用SSS證得△ADC≌△BDC,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解題;②連接MC,易證△MCD為等邊三角形,即可證明△BDC≌△EMC即可解題;③分EN=EC、EN=CN、CE=CN三種情形討論,畫出圖形,利用等腰三角形的性質(zhì)即可求解.【詳解】(1)∵CB=CA,DB=DA,∴CD垂直平分線段AB,∴CD⊥AB;(2)①在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ACD=∠BCD=∠BCA=45°,∠CAD=∠CBD=15°,∴∠BDC=180-45°-15°=120°;②結(jié)論:ME=BD,理由:連接MC,∵,,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM,∠CDE=60°,∴△MCD為等邊三角形,∴CM=CD,∵EC=CA=CB,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC和△EMC中,,∴△BDC≌△EMC(AAS),∴ME=BD;③當(dāng)EN=EC時(shí),∠=7.5°或∠==82.5°;當(dāng)EN=CN時(shí),∠==150°;當(dāng)CE=CN時(shí),點(diǎn)N與點(diǎn)A重合,∠CNE=15°,所以∠CNE的度數(shù)為7.5°或15°或82.5°或150°.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考?jí)狠S題.9.探索發(fā)現(xiàn):……根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題:(1)=,=;(2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:(3)利用規(guī)律解方程:解析:(1);(2);(3)見解析.【解析】【分析】(1)根據(jù)簡(jiǎn)單的分式可得,相鄰兩個(gè)數(shù)的積的倒數(shù)等于它們的倒數(shù)之差,即可得到和(2)根據(jù)(1)規(guī)律將乘法寫成減法的形式,可以觀察出前一項(xiàng)的減數(shù)等于后一項(xiàng)的被減數(shù),因此可得它們的和.(3)首先利用(2)的和的結(jié)果將左邊化簡(jiǎn),再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗(yàn):把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點(diǎn)睛】本題主要考查學(xué)生的歸納總結(jié)能力,關(guān)鍵在于根據(jù)簡(jiǎn)單的數(shù)的運(yùn)算尋找規(guī)律,是考試的熱點(diǎn).10.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說明理由;若不變化,請(qǐng)直接寫出比值.解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.11.如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐為,點(diǎn)的坐標(biāo)為,在中,軸交軸于點(diǎn).(1)求和的度數(shù);(2)如圖,在圖的基礎(chǔ)上,以點(diǎn)為一銳角頂點(diǎn)作,,交于點(diǎn),求證:;(3)在第()問的條件下,若點(diǎn)的標(biāo)為,求四邊形的面積.解析:(1)∠OAD=∠ODA=45°;(2)證明見解析;(3)18.【解析】【分析】(1)由等腰直角三角形的性質(zhì)可求解;(2)通過“ASA”可證得△ODB≌△OAP,進(jìn)而可得BO=OP;(3)過點(diǎn)P作PF⊥x軸于點(diǎn)F,延長(zhǎng)FP交BC于N,過點(diǎn)A作AQ⊥BC于Q,由“AAS”可證△OBM≌△OPF,可得PF=BM=2,OF=OM=4,由面積和差關(guān)系可求四邊形BOPC的面積.【詳解】(1)∵點(diǎn)A的坐為(2,0),點(diǎn)D的坐標(biāo)為(0,-2),∴OA=OD,∵∠AOD=90°,∴∠OAD=∠ODA=45°;(2)∵∠BOE=∠AOD=90°,∴∠BOD=∠AOP,∵∠ABC=∠ACB=45°,∴∠BAC=90°,AB=AC,∵∠OAD=∠ODA=45°,∴∠ODB=135°=∠OAP,在△ODB和△OAP中,,∴△ODB≌△OAP(ASA),∴BO=OP;(3)如圖,過點(diǎn)P作PF⊥x軸于點(diǎn)F,延長(zhǎng)FP交BC于N,過點(diǎn)A作AQ⊥BC于Q,∵BC∥x軸,AQ⊥BC,PF⊥x軸,∴AQ⊥x軸,PN⊥BC,∠AOM=∠BMO=90°,∴點(diǎn)Q橫坐標(biāo)為2,∵∠BAC=90°,AB=AC,AQ⊥BC,∴BQ=QC,∵點(diǎn)B的標(biāo)為(-2,-4),∴BM=2,OM=4,BQ=4=QC,∵PF⊥x軸,∴∠OFP=∠OMB=90°,在△OBM和△OPF中,,∴△OBM≌△OPF(AAS),∴PF=BM=2,OF=OM=4,∵BC∥x軸,AQ⊥x軸,NF⊥x軸,∴OM=AQ=FN=4,∴PN=2,∵∠PNC=90°,∠ACB=45°,∴∠ACB=∠CPN=45°,∴CN=PN=2,∵四邊形BOPC的面積=S△OBM+S梯形OMNP+S△PNC,∴四邊形BOPC的面積=×2×4+×4×(2+4)+×2×2=18.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、三角形的面積公式等知識(shí),難度較大,添加恰當(dāng)?shù)妮o助線構(gòu)造全等三角形是解本題的關(guān)鍵.12.如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,BP=cm,CQ=cm.(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請(qǐng)說明理由;(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?(4)若點(diǎn)Q以(3)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇?解析:(1)BP=3cm,CQ=3cm;(2)全等,理由詳見解析;(3);(4)經(jīng)過s點(diǎn)P與點(diǎn)Q第一次相遇.【解析】【分析】(1)速度和時(shí)間相乘可得BP、CQ的長(zhǎng);(2)利用SAS可證三角形全等;(3)三角形全等,則可得出BP=PC,CQ=BD,從而求出t的值;(4)第一次相遇,即點(diǎn)Q第一次追上點(diǎn)P,即點(diǎn)Q的運(yùn)動(dòng)的路程比點(diǎn)P運(yùn)動(dòng)的路程多10+10=20cm的長(zhǎng)度.【詳解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,點(diǎn)D為AB的中點(diǎn),∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP與CQ不是對(duì)應(yīng)邊,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t=s,∴cm/s;(4)設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇.由題意,得x=3x+2×10,解得∴經(jīng)過s點(diǎn)P與點(diǎn)Q第一次相遇.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題,解題關(guān)鍵還是全等的證明和利用,將動(dòng)點(diǎn)問題視為定點(diǎn)問題來分析可簡(jiǎn)化思考過程.13.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點(diǎn),分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)在外部,點(diǎn)在內(nèi)部時(shí),求證:.(深入研究)(3)如圖③,和都是等邊三角形,點(diǎn),,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關(guān)系為__________.(4)如圖④,和都是等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關(guān)系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連結(jié)、.當(dāng),時(shí),在旋轉(zhuǎn)過程中,與的面積和的最大值為__________.解析:(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達(dá)到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過程中,AC始終保持不變,∴要△ADC面積最大,∴點(diǎn)D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達(dá)到的最大為2+×AC×AD=5+2=7,故答案為7.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.14.問題情景:數(shù)學(xué)課上,老師布置了這樣一道題目,如圖1,△ABC是等邊三角形,點(diǎn)D是BC的中點(diǎn),且滿足∠ADE=60°,DE交等邊三角形外角平分線于點(diǎn)E.試探究AD與DE的數(shù)量關(guān)系.操作發(fā)現(xiàn):(1)小明同學(xué)過點(diǎn)D作DF∥AC交AB于F,通過構(gòu)造全等三角形經(jīng)過推理論證就可以解決問題,請(qǐng)您按照小明同學(xué)的方法確定AD與DE的數(shù)量關(guān)系,并進(jìn)行證明.類比探究:(2)如圖2,當(dāng)點(diǎn)D是線段BC上任意一點(diǎn)(除B、C外),其他條件不變,試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.拓展應(yīng)用:(3)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上,且滿足CD=BC,在圖3中補(bǔ)全圖形,直接判斷△ADE的形狀(不要求證明).解析:(1)AD=DE,見解析;(2)AD=DE,見解析;(3)見解析,△ADE是等邊三角形,【解析】【分析】(1)根據(jù)題意,通過平行線的性質(zhì)及等邊三角形的性質(zhì)證明即可得解;(2)根據(jù)題意,通過平行線的性質(zhì)及等邊三角形的性質(zhì)證明即可得解;(3)根據(jù)垂直平分線的性質(zhì)及等邊三角形的判定定理進(jìn)行證明即可.【詳解】(1)如下圖,數(shù)量關(guān)系:AD=DE.證明:∵是等邊三角形∴AB=BC,∵DF∥AC∴,∠BDF=∠BCA∴∴是等邊三角形,∴DF=BD∵點(diǎn)D是BC的中點(diǎn)∴BD=CD∴DF=CD∵CE是等邊的外角平分線∴∵是等邊三角形,點(diǎn)D是BC的中點(diǎn)∴AD⊥BC∴∵∴在與中∴∴AD=DE;(2)結(jié)論:AD=DE.證明:如下圖,過點(diǎn)D作DF∥AC,交AB于F∵是等邊三角形∴AB=BC,∵DF∥AC∴∴∴是等邊三角形,∴BF=BD∴AF=DC∵CE是等邊的外角平分線∴∵∠ADC是的外角∴∵∴∠FAD=∠CDE在與中∴∴AD=DE;(3)如下圖,是等邊三角形.證明:∵∴∵CE平分∴CE垂直平分AD∴AE=DE∵∴是等邊三角形.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì)及判定,三角形全等的判定及性質(zhì),平行線的性質(zhì),垂直平分線的性質(zhì)等相關(guān)內(nèi)容,熟練掌握三角形綜合解決方法是解決本題的關(guān)鍵.15.某校八年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.解析:(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.二、選擇題16.購(gòu)買單價(jià)為a元的物品10個(gè),付出b元(b>10a),應(yīng)找回()A.(b﹣a)元 B.(b﹣10)元 C.(10a﹣b)元 D.(b﹣10a)元解析:D【解析】【分析】根據(jù)題意知:花了10a元,剩下(b﹣10a)元.【詳解】購(gòu)買單價(jià)為a元的物品10個(gè),付出b元(b>10a),應(yīng)找回(b﹣10a)元.故選D.【點(diǎn)睛】本題考查了列代數(shù)式,能讀懂題意是解答此題的關(guān)鍵.17.已知max表示取三個(gè)數(shù)中最大的那個(gè)數(shù),例如:當(dāng)x=9時(shí),max=81.當(dāng)max時(shí),則x的值為()A. B. C. D.解析:C【解析】【分析】利用max的定義分情況討論即可求解.【詳解】解:當(dāng)max時(shí),x≥0①=,解得:x=,此時(shí)>x>x2,符合題意;②x2=,解得:x=;此時(shí)>x>x2,不合題意;③x=,>x>x2,不合題意;故只有x=時(shí),max.故選:C.【點(diǎn)睛】此題主要考查了新定義,正確理解題意分類討論是解題關(guān)鍵.18.如圖,直線與直線相交于點(diǎn),,若過點(diǎn)作,則的度數(shù)為()A. B.C.或 D.或解析:D【解析】【分析】由題意分兩種情況過點(diǎn)作,利用垂直定義以及對(duì)頂角相等進(jìn)行分析計(jì)算得出選項(xiàng).【詳解】解:過點(diǎn)作,如圖:由可知,從而由垂直定義求得=90°-40°或90°+40°,即有的度數(shù)為或.故選D.【點(diǎn)睛】本題考查了垂直定義以及對(duì)頂角的應(yīng)用,主要考查學(xué)生的計(jì)算能力.19.直線與相交得如圖所示的5個(gè)角,其中互為對(duì)頂角的是()A.和 B.和 C.和 D.和解析:A【解析】【分析】?jī)蓷l直線相交后所得的有公共頂點(diǎn),且兩邊互為反向延長(zhǎng)線的兩個(gè)角互為對(duì)頂角,據(jù)此逐一判斷即可.【詳解】A.和只有一個(gè)公共頂點(diǎn),且兩邊互為反向延長(zhǎng)線,是對(duì)頂角,符合題意,B.和兩邊不是互為反向延長(zhǎng)線,不是對(duì)頂角,不符合題意,C.和沒有公共頂點(diǎn),不是對(duì)頂角,不符合題意,D.和沒有公共頂點(diǎn),不是對(duì)頂角,不符合題意,故選:A.【點(diǎn)睛】本題考查對(duì)頂角,兩條直線相交后所得的有公共頂點(diǎn)且兩邊互為反向延長(zhǎng)線的兩個(gè)角叫做對(duì)頂角;熟練掌握對(duì)頂角的定義是解題關(guān)鍵.20.下列選項(xiàng)中,運(yùn)算正確的是()A. B.C. D.解析:B【解析】【分析】根據(jù)整式的加減法法則即可得答案.【詳解】A.5x-3x=2x,故該選項(xiàng)計(jì)算錯(cuò)誤,不符合題意,B.,計(jì)算正確,符合題意,C.-2a+3a=a,故該選項(xiàng)計(jì)算錯(cuò)誤,不符合題意,D.2a與3b不是同類項(xiàng),不能合并,故該選項(xiàng)計(jì)算錯(cuò)誤,不符合題意,故選:B.【點(diǎn)睛】本題考查整式的加減,熟練掌握合并同類項(xiàng)法則是解題關(guān)鍵.21.下列說法中正確的有()A.連接兩點(diǎn)的線段叫做兩點(diǎn)間的距離B.過一點(diǎn)有且只有一條直線與已知直線垂直C.對(duì)頂角相等D.線段AB的延長(zhǎng)線與射線BA是同一條射線解析:C【解析】【分析】分別利用直線的性質(zhì)以及射線的定義和垂線定義分析得出即可.【詳解】A.連接兩點(diǎn)的線段的長(zhǎng)度叫做兩點(diǎn)間的距離,錯(cuò)誤;B.在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直,錯(cuò)誤;C.對(duì)頂角相等,正確;D.線段AB的延長(zhǎng)線與射線BA不是同一條射線,錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了直線的性質(zhì)以及射線的定義和垂線的性質(zhì),正確把握相關(guān)定義和性質(zhì)是解題的關(guān)鍵.22.如圖所示,數(shù)軸上A,B兩點(diǎn)表示的數(shù)分別是﹣1和,則A,B兩點(diǎn)之間的距離是()A.2 B.2﹣1 C.2+1 D.1解析:D【解析】【分析】根據(jù)題意列出算式,計(jì)算即可得到結(jié)果.【詳解】解:∵A,B兩點(diǎn)表示的數(shù)分別是﹣1和,∴A,B兩點(diǎn)之間的距離是:﹣(﹣1)=1;故選:D.【點(diǎn)睛】此題考查了實(shí)數(shù)與數(shù)軸,掌握數(shù)軸上點(diǎn)的特點(diǎn),利用數(shù)軸,數(shù)形結(jié)合求出答案.23.下列分式中,與的值相等的是()A. B. C. D.解析:A【解析】【分析】根據(jù)分式的基本性質(zhì)即可求出答案.【詳解】解:原式=,故選:A.【點(diǎn)睛】本題考查分式的基本性質(zhì),解題的關(guān)鍵熟練運(yùn)用分式的基本性質(zhì),本題屬于基礎(chǔ)題型.24.王老師有一個(gè)實(shí)際容量為的U盤,內(nèi)有三個(gè)文件夾.已知課件文件夾占用了的內(nèi)存,照片文件夾內(nèi)有32張大小都是的旅行照片,音樂文件夾內(nèi)有若干首大小都是的音樂.若該U盤內(nèi)存恰好用完,則此時(shí)文件夾內(nèi)有音樂()首.A.28 B.30 C.32 D.34解析:B【解析】【分析】根據(jù)同底數(shù)冪的乘除法法則,進(jìn)行計(jì)算即可.【詳解】解:(1.8?0.8)×220=220(KB),32×211=25×211=216(KB),(220?216)÷215=25?2=30(首),故選:B.【點(diǎn)睛】本題考查了同底數(shù)冪乘除法運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 股東合伙協(xié)議合同
- 購(gòu)銷合同協(xié)議條款說明大全
- KPI數(shù)據(jù)保密承諾合同
- 巽寮灣景點(diǎn)介紹
- 2025上海市同濟(jì)口腔醫(yī)院(同濟(jì)大學(xué)附屬口腔醫(yī)院)實(shí)驗(yàn)技術(shù)員招聘1人筆試考試參考題庫(kù)及答案解析
- 金融投資收益分配協(xié)議
- 交通安全模擬駕駛培訓(xùn)協(xié)議協(xié)議
- 數(shù)據(jù)采集數(shù)據(jù)采集器銷售協(xié)議
- 溫室作物的種植手段
- 塑膠跑道建設(shè)項(xiàng)目招標(biāo)方案實(shí)例
- 事故汽車修復(fù)技術(shù)規(guī)范標(biāo)準(zhǔn)詳
- 江蘇省無錫市2023-2024學(xué)年高一下學(xué)期期末考試物理試題(解析版)
- 胃癌術(shù)后常見并發(fā)癥
- JJF 2173-2024 高錳酸鹽指數(shù)分析儀校準(zhǔn)規(guī)范
- C語言編程方法與思想知到課后答案智慧樹章節(jié)測(cè)試答案2025年春北京航空航天大學(xué)
- 2025至2030年救生衣項(xiàng)目投資價(jià)值分析報(bào)告
- 《逸仙電商經(jīng)營(yíng)管理模式分析》2000字
- 裝飾裝修工程質(zhì)量評(píng)估報(bào)告
- 護(hù)理三基試題匯編1000題(含答案)
- 隧道工程施工總結(jié)范文
- 【MOOC】制藥分離工程-鄭州大學(xué) 中國(guó)大學(xué)慕課MOOC答案
評(píng)論
0/150
提交評(píng)論