人教版初一(下冊)期末幾何壓軸題數(shù)學(xué)試卷(一)培優(yōu)試題_第1頁
人教版初一(下冊)期末幾何壓軸題數(shù)學(xué)試卷(一)培優(yōu)試題_第2頁
人教版初一(下冊)期末幾何壓軸題數(shù)學(xué)試卷(一)培優(yōu)試題_第3頁
人教版初一(下冊)期末幾何壓軸題數(shù)學(xué)試卷(一)培優(yōu)試題_第4頁
人教版初一(下冊)期末幾何壓軸題數(shù)學(xué)試卷(一)培優(yōu)試題_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、解答題1.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達點E.設(shè)點P運動的時間為t秒.(1)請以A點為原點,AB所在直線為x軸,1cm為單位長度,建立一個平面直角坐標(biāo)系,并用t表示出點P在不同線段上的坐標(biāo).(2)在(1)相同條件得到的結(jié)論下,是否存在P點使△APE的面積等于20cm2時,若存在,請求出P點坐標(biāo);若不存在,請說明理由.2.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉(zhuǎn),但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.3.如圖,已知直線射線,.是射線上一動點,過點作交射線于點,連接.作,交直線于點,平分.(1)若點,,都在點的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點的運動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請說明理由.4.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).5.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點,探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點M,交AE延長線于點F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數(shù)量關(guān)系:.②點P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補全圖形后,求∠EPD的度數(shù)6.已知:直線AB∥CD,直線MN分別交AB、CD于點E、F,作射線EG平分∠BEF交CD于G,過點F作FH⊥MN交EG于H.(1)當(dāng)點H在線段EG上時,如圖1①當(dāng)∠BEG=時,則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點H在線段EG的延長線上時,請先在圖2中補全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.7.觀察下列兩個等式:,給出定義如下:我們稱使等式成立的一對有理數(shù)為“白馬有理數(shù)對”,記為,如:數(shù)對都是“白馬有理數(shù)對”.(1)數(shù)對中是“白馬有理數(shù)對”的是_________;(2)若是“白馬有理數(shù)對”,求的值;(3)若是“白馬有理數(shù)對”,則是“白馬有理數(shù)對”嗎?請說明理由.(4)請再寫出一對符合條件的“白馬有理數(shù)對”_________(注意:不能與題目中已有的“白馬有理數(shù)對”重復(fù))8.三個自然數(shù)x、y、z組成一個有序數(shù)組,如果滿足,那么我們稱數(shù)組為“蹦蹦數(shù)組”.例如:數(shù)組中,故是“蹦蹦數(shù)組”;數(shù)組中,故不是“蹦蹦數(shù)組”.(1)分別判斷數(shù)組和是否為“蹦蹦數(shù)組”;(2)s和t均是三位數(shù)的自然數(shù),其中s的十位數(shù)字是3,個位數(shù)字是2,t的百位數(shù)字是2,十位數(shù)字是5,且.是否存在一個整數(shù)b,使得數(shù)組為“蹦蹦數(shù)組”.若存在,求出b的值;若不存在,請說明理由;(3)有一個三位數(shù)的自然數(shù),百位數(shù)字是1,十位數(shù)字是p,個位數(shù)字是q,若數(shù)組為“蹦蹦數(shù)組”,且該三位數(shù)是7的倍數(shù),求這個三位數(shù).9.規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.例如:因為23=8,所以(2,8)=3.(1)根據(jù)上述規(guī)定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)10.閱讀下面文字:對于可以如下計算:原式上面這種方法叫拆項法,你看懂了嗎?仿照上面的方法,計算:(1)(2)11.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.12.閱讀下面的文字,解答問題.對于實數(shù)a,我們規(guī)定:用符號[a]表示不大于a的最大整數(shù);用{a}表示a減去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法計算:[]={5﹣}=;(2)若[]=1,寫出所有滿足題意的整數(shù)x的值:.(3)已知y0是一個不大于280的非負數(shù),且滿足{}=0.我們規(guī)定:y1=[],y2=[],y3=[],…,以此類推,直到y(tǒng)n第一次等于1時停止計算.當(dāng)y0是符合條件的所有數(shù)中的最大數(shù)時,此時y0=,n=.13.在平面直角坐標(biāo)系中,已知線段,點的坐標(biāo)為,點的坐標(biāo)為,如圖1所示.(1)平移線段到線段,使點的對應(yīng)點為,點的對應(yīng)點為,若點的坐標(biāo)為,求點的坐標(biāo);(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(nèi)(與對應(yīng),與對應(yīng)),連接如圖2所示.若表示△BCD的面積),求點、的坐標(biāo);(3)在(2)的條件下,在軸上是否存在一點,使表示△PCD的面積)?若存在,求出點的坐標(biāo);若不存在,請說明理由.14.已知,AB∥CD,點E在CD上,點G,F(xiàn)在AB上,點H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).15.如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標(biāo)為(-3,2).(1)直接寫出點E的坐標(biāo);D的坐標(biāo)(3)點P是線段CE上一動點,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x,y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.16.我們定義,關(guān)于同一個未知數(shù)的不等式和,若的解都是的解,則稱與存在“雅含”關(guān)系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關(guān)系,是的“子式”.(1)若關(guān)于的不等式,,請問與是否存在“雅含”關(guān)系,若存在,請說明誰是誰的“子式”;(2)已知關(guān)于的不等式,,若與存在“雅含”關(guān)系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數(shù),關(guān)于的不等式,,請分析是否存在,使得與存在“雅含”關(guān)系,且是的“子式”,若存在,請求出的值,若不存在,請說明理由.17.如圖1,在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,邊長為2的正方形ABCD(點D與點O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點H坐標(biāo)為(7,0).正方形ABCD以3個單位長度/秒的速度沿著x軸向右運動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運動時間為t秒,且t<4.(1)點F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運動的同時,動點P在線段FE上,以1個單位長度/秒的速度從F到E運動.連接AP,AE.①求t為何值時,AP所在直線垂直于x軸;②求t為何值時,S=S△APE.18.在平面直角坐標(biāo)系中,點A(1,2),點B(a,b),且,點E(6,0),將線段AB向下平移m個單位(m>0)得到線段CD,其中A、B的對應(yīng)點分別為C、D.(1)求點的坐標(biāo)及三角形ABE的面積;(2)當(dāng)線段CD與軸有公共點時,求的取值范圍;(3)設(shè)三角形CDE的面積為,當(dāng)時,求的取值范圍.19.題目:滿足方程組的x與y的值的和是2,求k的值.按照常規(guī)方法,順著題目思路解關(guān)于x,y的二元一次方程組,分別求出xy的值(含有字母k),再由x+y=2,構(gòu)造關(guān)于k的方程求解,從而得出k值.(1)某數(shù)學(xué)興趣小組對本題的解法又進行了探究利用整體思想,對于方程組中每個方程變形得到“x+y”這個整體,或者對方程組的兩個方程進行加減變形得到“x+y”整體值,從而求出k值請你運用這種整體思想的方法,完成題目的解答過程.(2)小勇同學(xué)的解答是:觀察方程①,令3x=k,5y=1解得y=,3x+y=2,∴x=∴k=3×=把x=,y=代入方程②得k=﹣所以k的值為或﹣.請診斷分析并評價“小勇同學(xué)的解答”.20.歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項式用記號f(x)來表示.例如f(x)=x2+3x-5,把x=某數(shù)時多項式的值用f(某數(shù))來表示.例如x=-1時多項式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當(dāng)k無論為何值,總有f(1)=0,求a,b的值.21.某校規(guī)劃在一塊長AD為18m、寬AB為13m的長方形場地ABCD上,設(shè)計分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設(shè)計三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問通道的寬是多少?22.新定義,若關(guān)于,的二元一次方程組①的解是,關(guān)于,的二元一次方程組②的解是,且滿足,,則稱方程組②的解是方程組①的模糊解.關(guān)于,的二元一次方程組的解是方程組的模糊解,則的取值范圍是________.23.閱讀下列文字,請仔細體會其中的數(shù)學(xué)思想.(1)解方程組,我們利用加減消元法,很快可以求得此方程組的解為;(2)如何解方程組呢?我們可以把m+5,n+3看成一個整體,設(shè)m+5=x,n+3=y(tǒng),很快可以求出原方程組的解為;(3)由此請你解決下列問題:若關(guān)于m,n的方程組與有相同的解,求a、b的值.24.定義一種新運算“a※b”:當(dāng)a≥b時,a※b=2a+b;當(dāng)a<b時,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3=;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),則x的取值范圍為;(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范圍;(4)小明在計算(2x2﹣2x+4)※(x2+4x﹣6)時隨意取了一個x的值進行計算,得出結(jié)果是0,小麗判斷小明計算錯了,小麗是如何判斷的?請說明理由.25.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時減去1,得,然后同時除以2,得.解決下列問題:(1)請你寫一個雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.26.如圖,在平面直角坐標(biāo)系中,軸,軸,且,動點從點出發(fā),以每秒的速度,沿路線向點運動;動點從點出發(fā),以每秒的速度,沿路線向點運動.若兩點同時出發(fā),其中一點到達終點時,運動停止.(Ⅰ)直接寫出三個點的坐標(biāo);(Ⅱ)設(shè)兩點運動的時間為秒,用含的式子表示運動過程中三角形的面積;(Ⅲ)當(dāng)三角形的面積的范圍小于16時,求運動的時間的范圍.27.閱讀理解:定義:,,為數(shù)軸上三點,若點到點的距離是它到點的時距離的(為大于1的常數(shù))倍,則稱點是的倍點,且當(dāng)是的倍點或的倍點時,我們也稱是和兩點的倍點.例如,在圖1中,點是的2倍點,但點不是的2倍點.(1)特值嘗試.①若,圖1中,點______是的2倍點.(填或)②若,如圖2,,為數(shù)軸上兩個點,點表示的數(shù)是,點表示的數(shù)是4,數(shù)______表示的點是的3倍點.(2)周密思考:圖2中,一動點從出發(fā),以每秒2個單位的速度沿數(shù)軸向左運動秒,若恰好是和兩點的倍點,求所有符合條件的的值.(用含的式子表示)(3)拓展應(yīng)用數(shù)軸上兩點間的距離不超過30個單位長度時,稱這兩點處于“可視距離”.若(2)中滿足條件的和兩點的所有倍點均處于點的“可視距離”內(nèi),請直接寫出的取值范圍.(不必寫出解答過程)28.如圖,數(shù)軸上兩點A、B對應(yīng)的數(shù)分別是﹣1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當(dāng)點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)﹣3,0,2.5是連動數(shù)的是;(2)關(guān)于x的方程2x﹣m=x+1的解滿足是連動數(shù),求m的取值范圍;(3)當(dāng)不等式組的解集中恰好有4個解是連動整數(shù)時,求a的取值范圍.29.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設(shè)為線段上一動點,當(dāng)時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當(dāng)點在線段上運動時,作交于的平分線交于,當(dāng)點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.30.規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點,將這些亮點連接得到一條直線,稱這條直線是亮點的隱線,答下列問題:(1)已知,則是隱線的亮點的是;(2)設(shè)是隱線的兩個亮點,求方程中的最小的正整數(shù)解;(3)已知是實數(shù),且,若是隱線的一個亮點,求隱線中的最大值和最小值的和.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)建立直角坐標(biāo)系見解析,當(dāng)0<t≤4時,即當(dāng)點P在線段AB上時,其坐標(biāo)為:P(2t,0),當(dāng)4<t≤7時,即當(dāng)點P在線段BC上時,其坐標(biāo)為:P(8,2t﹣8),當(dāng)7<t≤10時,即當(dāng)點P在線段CE上時,其坐標(biāo)為:P(22﹣2t,6);(2)存在,當(dāng)點P的坐標(biāo)分別為:P(,0)或P(8,4)時,△APE的面積等于.【分析】(1)建立平面直角坐標(biāo)系,根據(jù)點P的運動速度分別求出點P在線段AB,BC,CE上的坐標(biāo);(2)根據(jù)(1)中得到的點P的坐標(biāo)以及,分別列出三個方程并解出此時t的值再進行討論.【詳解】(1)正確畫出直角坐標(biāo)系如下:當(dāng)0<t≤4時,點P在線段AB上,此時P點的橫坐標(biāo)為,其縱坐標(biāo)為0;∴此時P點的坐標(biāo)為:P(2t,0);同理:當(dāng)4<t≤7時,點P在線段BC上,此時P點的坐標(biāo)為:P(8,2t﹣8);當(dāng)7<t≤10時,點P在線段CE上,此時P點的坐標(biāo)為:P(22﹣2t,6).(2)存在,①如圖1,當(dāng)0<t≤4時,點P在線段AB上,,解得:t(s);∴P點的坐標(biāo)為:P(,0).②如圖2,當(dāng)4<t≤7時,點P在線段BC上,;∴;解得:t=6(s);∴點P的坐標(biāo)為:P(8,4).③如圖3,當(dāng)7<t≤10時,點P在線段CE上,;解得:t(s);∵7,∴t(應(yīng)舍去),綜上所述:當(dāng)P點的坐標(biāo)為:P(,0)或P(8,4)時,△APE的面積等于.【點睛】本題考查了三角形的面積的計算公式,,在本題計算的過程中根據(jù)動點的坐標(biāo)正確地求出三角形的底邊長度和高是解題的關(guān)鍵.2.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.3.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點G、F在點E的右側(cè)時,②當(dāng)點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點G、F在點E的右側(cè)時,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點G、F在點E的左側(cè)時,反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等是解題的關(guān)鍵.4.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.5.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識點是解題的關(guān)鍵.6.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點睛】本題考查平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.7.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根據(jù)“白馬有理數(shù)對”的定義,把數(shù)對分別代入計算即可判斷;(2)根據(jù)“白馬有理數(shù)對”的定義,構(gòu)建方程即可解決問題;(3)根據(jù)“白馬有理數(shù)對”的定義即可判斷;(4)根據(jù)“白馬有理數(shù)對”的定義即可解決問題.【詳解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白馬有理數(shù)對”,∵5+=,5×-1=,∴5+=5×-1,∴是“白馬有理數(shù)對”,故答案為:;(2)若是“白馬有理數(shù)對”,則a+3=3a-1,解得:a=2,故答案為:2;(3)若是“白馬有理數(shù)對”,則m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白馬有理數(shù)對”,故答案為:不是;(4)取m=6,則6+x=6x-1,∴x=,∴(6,)是“白馬有理數(shù)對”,故答案為:(6,).【點睛】本題考查了“白馬有理數(shù)對”的定義,有理數(shù)的加減運算,一次方程的列式求解,理解“白馬有理數(shù)對”的定義是解題的關(guān)鍵.8.(1)(437,307,177)是“蹦蹦數(shù)組”,(601,473,346)不是“蹦蹦數(shù)組”;(2)存在,數(shù)組為(532,395,258);(3)這個三位數(shù)是147.【分析】(1)由“蹦蹦數(shù)組”的定義進行驗證即可;(2)設(shè)s為,t為,則,先后求得n、s的值,根據(jù)“蹦蹦數(shù)組”的定義即可求解;(3)設(shè)這個數(shù)為,則,由和都是0到9的正整數(shù),列舉法即可得出這個三位數(shù).【詳解】解:(1)數(shù)組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數(shù)組”;數(shù)組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數(shù)組”;(2)設(shè)s為,t為,則,∵m、n為整數(shù),∴,則t為258,∴s為532,而,則b為532-137=395,驗算:532-395=395-258=137,故數(shù)組為(532,395,258);(3)根據(jù)題意,設(shè)這個數(shù)為,則,∴,而和都是0到9的正整數(shù),討論:p12345q13579111123135147159而是7的倍數(shù)的三位數(shù)只有147,且1-4=4-7=-3,數(shù)組(1,4,7)為“蹦蹦數(shù)組”,故這個三位數(shù)是147.【點睛】本題是一道新定義題目,解決的關(guān)鍵是能夠根據(jù)定義,通過列舉法找到合適的數(shù),進而求解.9.(1)3,0,-2(2)(4,30)【解析】分析:(1)根據(jù)閱讀材料,應(yīng)用規(guī)定的運算方式計算即可;(2)應(yīng)用規(guī)定和同底數(shù)冪相乘的性質(zhì)逆用變形計算即可.詳解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=∴(2,)=-2(2)設(shè)(4,5)=x,(4,6)=y則,=6∴∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)點睛:此題是一個規(guī)定計算的應(yīng)用型的題目,關(guān)鍵是靈活應(yīng)用規(guī)定的關(guān)系式計算,熟練記憶冪的相關(guān)性質(zhì).10.(1)(2)【分析】(1)根據(jù)例子將每項的整數(shù)部分相加,分?jǐn)?shù)部分相加即可解答;(2)根據(jù)例子將每項的整數(shù)部分相加,分?jǐn)?shù)部分相加即可解答.【詳解】(1)(2)原式【點睛】此題考察新計算方法,正確理解題意是解題的關(guān)鍵,根據(jù)例子即可仿照計算.11.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時,x+y=4+3=7當(dāng)x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數(shù)的運算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.12.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定義進行計算即可;(2)由題可知,,則可得滿足題意的整數(shù)的的值為1、2、3;(3)由,可知,是某個整數(shù)的平方,又是符合條件的所有數(shù)中最大的數(shù),則,再依次進行計算.【詳解】解:(1)由定義可得,,,.故答案為:2;.(2),,即,整數(shù)的值為1、2、3.故答案為:1、2、3.(3),即,可設(shè),且是自然數(shù),是符合條件的所有數(shù)中的最大數(shù),,,,,,即.故答案為:256,4.【點睛】本題屬于新定義類問題,主要考查估算無理數(shù)大小,無理數(shù)的整數(shù)部分和小數(shù)部分,理解定義內(nèi)容是解題關(guān)鍵.13.(1);(2);(3)存在點,其坐標(biāo)為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設(shè)出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設(shè)出點P的坐標(biāo),表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應(yīng)點,∴設(shè),∴即線段向左平移5個單位,再向上平移4個單位得到線段∴點平移后的對應(yīng)點;(2)∵點C在軸上,點D在第二象限,∴線段向左平移3個單位,再向上平移個單位,∴連接,,∴∴;(3)存在設(shè)點,∴∵,∴∴,∴∴存在點,其坐標(biāo)為或.【點睛】本題考查了線段平移的性質(zhì),解題的關(guān)鍵在利用平移的性質(zhì),得到點坐標(biāo)的關(guān)系、圖形面積的關(guān)系,根據(jù)面積的關(guān)系,從而求出點的坐標(biāo).14.(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點M作MQ∥AB,過點H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.15.(1)(-2,0);(-3,0);(2)z=x+y.證明見解析.【分析】(1)依據(jù)平移的性質(zhì)可知BC∥x軸,BC=AE=3,然后依據(jù)點A和點C的坐標(biāo)可得到點E和點D的坐標(biāo);(2過點P作PF∥BC交AB于點F,則PF∥AD,然后依據(jù)平行線的性質(zhì)可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依據(jù)角的和差關(guān)系進行解答即可.【詳解】解:(1)∵將三角形OAB沿x軸負方向平移,∴BC∥x軸,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案為:(-2,0);(-3,0).(2)z=x+y.證明如下:如圖,過點P作PF∥BC交AB于點F,則PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【點睛】此題是幾何變換綜合題,主要考查了點的坐標(biāo)的特點,平移得性質(zhì),平面坐標(biāo)系中點的坐標(biāo)和距離的關(guān)系,解本題的關(guān)鍵是由線段和部分點的坐標(biāo),得出其它點的坐標(biāo).16.(1)A與B存在“雅含”關(guān)系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據(jù)“雅含”關(guān)系的定義即可判斷;(2)先求出解集,根據(jù)“雅含”關(guān)系的定義得出,解不等式即可;(3)首先解關(guān)于的方程組即可求得的值,然后根據(jù),,且為整數(shù)即可得到一個關(guān)于的范圍,從而求得的整數(shù)值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關(guān)系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數(shù),∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1)(3,4);(2)①t=時,AP所在直線垂直于x軸;②當(dāng)t為或時,S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時,AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時,點D與點H重合,所以要分以下兩種情況討論:情況一:當(dāng)時,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時,如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時,S=S△APE.【點睛】本題考查了平面直角坐標(biāo)系中點的移動,一元一次方程的應(yīng)用等問題,理解題意,分類討論是解題關(guān)鍵.18.(1)B(3,4),7;(2);(3)或【分析】(1)由算術(shù)平方根的意義可求出a,b的值,可求出B點的坐標(biāo),過點B作BH⊥x軸于點H,過點A作AM⊥BH于點M,過點E作EN⊥AM于點N,連接EM,由三角形面積公式可得出答案;(2)當(dāng)點C在x軸上時,此時m=2,當(dāng)點D在x軸上時,m=4,由題意可得出答案;(3)根據(jù)點C和點D不同的位置,由坐標(biāo)與圖形的性質(zhì)及三角形面積公式可得出答案.【詳解】解:(1)∵,∴,∴b=4,∴=0,∴a-3=0,∴a=3,∴B(3,4),∴過點B作BH⊥x軸于點H,過點A作AM⊥BH于點M,過點E作EN⊥AM于點N,連接EM,則S△ABE=S△ABM+S△EBM+S△AME=×2×2+×2×3+×2×2=7;(2)當(dāng)點C在x軸上時,此時m=2,當(dāng)點D在x軸上時,m=4,∴2≤m≤4時,線段CD與x軸有公共點;(3)當(dāng)點C在x軸上時,此時m=2,C(1,0),D(3,2),S△CDE=5,當(dāng)點D在x軸上時,此時m=4,C(1,-2),D(3,0),S△CDE=3,當(dāng)點C在x軸下方時,點D在x軸上方時,且S△CDE=4,如圖2,分別過點C,D作x軸,y軸平行線交于點G,連接GE,過點E作EH⊥CG于點H,∵C(1,2-m),D(3,4-m),∴CG=2,DG=2,EH=m-2,∴S△CDE=S△CDG+S△EDG-S△CEG,∴4=×2×2+×2×3?×2?(m?2),∴m=3.∴當(dāng)2≤m≤3時,4≤S≤5;當(dāng)C,D均為x軸下方時,如圖3,∵CG=DG=2,GH=3,EH=m-2,∴S△CDE=S△ECG-S△CDG-S△EDG,∴S△CDE=×2?(m?2)-×2×2?×2×3=m-7,當(dāng)m-7=4時,m=11,當(dāng)m-7=5時,m=12,∴當(dāng)11≤m≤12時,4≤S≤5.綜合以上可得,當(dāng)2≤m≤3或11≤m≤12時,4≤S≤5.【點睛】本題是幾何變換綜合題,考查了三角形的面積,坐標(biāo)與圖形的性質(zhì),平移的性質(zhì),正確進行分類討論是解題的關(guān)鍵.19.(1);(2)“小勇同學(xué)的解答”錯誤,診斷分析和評價見解析【分析】(1)由兩種方法分別得出2=5-5k,求解即可;(2)從二元一次方程的解和二元一次方程組的解的概念進行診斷分析,再從創(chuàng)新的角度進行評價即可.【詳解】解:(1)方法一:②×2得:4x+6y=6-4k③,由③-①得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=,方法二:由①-②得:x+2y=3k-2③,由②-③得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=;(2)“小勇同學(xué)的解答”錯誤,理由如下:∵令3x=k,5y=1,求出的x、y的值只是方程①的一個解,而方程①有無數(shù)個解,根據(jù)方程組的解的概念,僅有方程①或方程②的某一個解中的x、y求出的k值不一定適合方程組中的另一個方程;只有當(dāng)方程①、②取公共解時,k和x、y之間對應(yīng)的數(shù)量關(guān)系才能成立,這時,求得的k=才是正確答案;另一方面,小勇的解答雖然錯誤,但他的思維給我們有創(chuàng)新的感覺,也讓我們鞏固加深了對方程組解的概念的連接,同時啟發(fā)我們平時在學(xué)習(xí)中,要善于多角度去探索問題,尋求新穎的解題方法.【點睛】本題考查了二元一次方程組的應(yīng)用、二元一次方程的解、一元一次方程的解法以及整體思想的應(yīng)用等知識;熟練掌握二元一次方程組的解法,由整體思想得出2=5-5k是解題的關(guān)鍵.20.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關(guān)于a、b、k的方程,根據(jù)無論k為何值時,都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無論為何值,總有f(1)=0,∴=0,則當(dāng)k=1、k=0時,可得方程組,解得:.【點睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關(guān)鍵.21.1【分析】利用AM:AN=8:9,設(shè)通道的寬為xm,AM=8ym,則AN=9ym,進而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設(shè)通道的寬是xm,AM=8ym.因為AM∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點睛】本題考查了二元一次方程組的應(yīng)用.22.【分析】根據(jù)已知條件,先求出兩個方程組的解,再根據(jù)“模糊解”的定義列出不等式組,解得m的取值范圍便可.【詳解】解:解方程組得:,解方程組得:,∵關(guān)于,的二元一次方程組的解是方程組的模糊解,因此有:且,化簡得:,即解得:,故答案為.【點睛】本題主要考查了新定義,二元一次方程組的解,解絕對值不等式,考查了學(xué)生的閱讀理解能力、知識的遷移能力以及計算能力,難度適中.正確理解“模糊解”的定義是解題的關(guān)鍵.23.(1);(2);(3)a=3,b=2.【分析】(1)利用加減消元法,可以求得;(2)利用換元法,設(shè)m+5=x,n+3=y,則方程組化為(1)中的方程組,可求得x,y的值進一步可求出原方程組的解;(3)把am和bn當(dāng)成一個整體利用已知條件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,繼而可求出a、b的值.【詳解】解:(1)兩個方程相加得,∴,把代入得,∴方程組的解為:;故答案是:;(2)設(shè)m+5=x,n+3=y(tǒng),則原方程組可化為,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程組與有相同的解可得方程組,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【點睛】本題主要考查二元一次方程組的解法,重點是考查整體思想及換元法的應(yīng)用,解題的關(guān)鍵是理解好整體思想.24.(1)7;(2)x≥7;(3)或x<3;(4)詳見解析.【分析】(1)先判斷a、b的大小,再根據(jù)相應(yīng)公式計算可得;(2)結(jié)合公式知3x﹣4≥2x+3,解之可得;(3)由題意可得或,分別求解可得;(4)先利用作差法判斷出2x2﹣2x+4>x2+4x﹣6,再根據(jù)公式計算(2x2﹣2x+4)※(x2+4x﹣6)即可.【詳解】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7.故答案為:﹣7;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7.故答案為:x≥7.(3)由題意可知分兩種情況討論:①,解得;②,解得;綜上:x的取值范圍為或x<3;(4)∵2x2﹣2x+4﹣(x2+4x﹣6)=x2﹣6x+10=(x﹣3)2+1>0∴2x2﹣2x+4>x2+4x﹣6,∴原式=2(2x2﹣2x+4)+(x2+4x﹣6)=4x2﹣4x+8+x2+4x﹣6=5x2+4;∴小明計算錯誤.【點睛】本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟和弄清新定義是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.25.(1)見解析;(2);(3)或【分析】(1),轉(zhuǎn)化為不等式組;(2)根據(jù)方法二的步驟解答即可;(3)根據(jù)方法二的步驟解答,得出,即可得到結(jié)論.【詳解】解:(1),轉(zhuǎn)化為不等式組;(2),不等式的左、中、右同時減去3,得,同時除以,得;(3),不等式的左、中、右同時乘以3,得,同時加5,得,的整數(shù)值或.【點睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關(guān)鍵,應(yīng)用的是不等式的性質(zhì).26.(Ⅰ);(Ⅱ)當(dāng)時,三角形的面積為;當(dāng)時,三角形的面積為;(Ⅲ)或.【分析】(Ⅰ)先求出的長,再根據(jù)的長即可得;(Ⅱ)先分別求出點運動到點所需時間、點運動到點所需時間,從而可得,再分和兩種情況,分別利用三角形的面積公式、梯形的面積公式即可得;(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,分和兩種情況,分別建立不等式,解不等式即可得.【詳解】解:(Ⅰ)軸,,,軸,,;(Ⅱ)∵點運動的路徑長為,所用時間為7秒;點運動的路徑長為,所用時間為秒,∴根據(jù)其中一點到達終點時運動停止可知,運動時間的取值范圍為,點運動到點所用時間為4秒,點運動到點所用時間為,因此,分以下兩種情況:①如圖,當(dāng)時,,則三角形的面積為;②當(dāng)時,如圖,過點作,交延長線于點,,,則三角形的面積為,,,綜上,當(dāng)時,三角形的面積為;當(dāng)時,三角形的面積為;(Ⅲ)①當(dāng)時,則,解得,則此時的取值范圍為;②當(dāng)時,則,解得,則此時的取值范圍為,綜上,當(dāng)三角形的面積的范圍小于16時,或.【點睛】本題考查了坐標(biāo)與圖形、三角形的面積公式、一元一次不等式的應(yīng)用等知識點,較難的是題(Ⅱ),正確分兩種情況討論是解題關(guān)鍵.27.(1)①B;②7或;(2)或或;(3)n≥.【分析】(1)①直接根據(jù)新定義的概念即可求出答案;②根據(jù)新定義的概念列出絕對值方程即可求解;(2)設(shè)P點所表示的數(shù)為4-2t,再根據(jù)新定義的概念列出方程即可求解;(3)分,,三種情況分別表示出PN的值,再根據(jù)PN的范圍列出不等式組即可求解.【詳解】(1)①由數(shù)軸可知,點A表示的數(shù)為-1,點B表示的數(shù)為2,點C表示的數(shù)為1,點D表示的數(shù)為0,∴AD=1,AC=2∴AD=AC∴點A不是的2倍點∴BD=2,BC=1∴BD=2BC∴點B是的2倍點故答案為:B;②若點C是點的3倍點∴CM=3CN設(shè)點C表示的數(shù)為x∴CM=,CN=∴=3即或解得x=7或x=∴數(shù)7或表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論