四川省甘孜市2026屆數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
四川省甘孜市2026屆數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
四川省甘孜市2026屆數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
四川省甘孜市2026屆數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
四川省甘孜市2026屆數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省甘孜市2026屆數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,的正切值為()A. B. C. D.2.如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△DEC,連接AD,若∠BAC=26°,則∠ADE的度數(shù)為()A.13° B.19° C.26° D.29°3.關(guān)于的一元二次方程x2﹣2+k=0有兩個相等的實數(shù)根,則k的值為()A.1 B.﹣1 C.2 D.﹣24.去年某果園隨機從甲、乙、丙、丁四個品種的葡萄樹中各采摘了10棵,每棵產(chǎn)量的平均數(shù)(單位:千克)及方差(單位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年準備從四個品種中選出一種產(chǎn)量既高又穩(wěn)定的葡萄樹進行種植,應(yīng)選的品種是(

)A.甲 B.乙 C.丙 D.丁5.如圖,直線y1=x+1與雙曲線y2=交于A(2,m)、B(﹣6,n)兩點.則當y1<y2時,x的取值范圍是()A.x>﹣6或0<x<2 B.﹣6<x<0或x>2 C.x<﹣6或0<x<2 D.﹣6<x<26.如圖,將Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得點C′與△ABC的內(nèi)心重合,已知AC=4,BC=3,則陰影部分的周長為()A.5 B.6 C.7 D.87.設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+m上的三點,則y1,y2,y3的大小關(guān)系為()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y38.下列一元二次方程有兩個相等實數(shù)根的是()A.x2=0 B.x2=4 C.x2﹣2x﹣1=0 D.x2+1=09.與y=2(x﹣1)2+3形狀相同的拋物線解析式為()A.y=1+x2 B.y=(2x+1)2 C.y=(x﹣1)2 D.y=2x210.在一個暗箱里放有a個除顏色外其它完全相同的球,這a個球中紅球只有3個.每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復(fù)摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是()A.12 B.9 C.4 D.311.不透明袋子中裝有若干個紅球和6個藍球,這些球除了顏色外,沒有其他差別,從袋子中隨機摸出一個球,摸出藍球的概率是0.6,則袋子中有紅球()A.4個 B.6個 C.8個 D.10個12.拋物線與y軸的交點為()A. B. C. D.二、填空題(每題4分,共24分)13.一只螞蟻在如圖所示的方格地板上隨機爬行,每個小方格形狀大小完全相同,當螞蟻停下時,停在地板中陰影部分的概率為________.14.某班主任將其班上學(xué)生上學(xué)方式(乘公汽、騎自行車、坐小轎車、步行共4種)的調(diào)查結(jié)果繪制成下圖所示的不完整的統(tǒng)計圖,已知乘坐公汽上學(xué)的有12人,騎自行車上學(xué)的有24人,乘家長小轎車上學(xué)的有4人,則步行上學(xué)的學(xué)生人數(shù)在扇形統(tǒng)計圖對應(yīng)的扇形所占的圓心角的度數(shù)為_____.15.如圖拋物線與軸交于,兩點,與軸交于點,點是拋物線對稱軸上任意一點,若點、、分別是、、的中點,連接,,則的最小值為_____.16.如圖,AB是半圓O的直徑,AB=10,過點A的直線交半圓于點C,且sin∠CAB=,連結(jié)BC,點D為BC的中點.已知點E在射線AC上,△CDE與△ACB相似,則線段AE的長為________;17.如圖示,在中,,,,點在內(nèi)部,且,連接,則的最小值等于______.18.小芳的房間有一面積為3

m2的玻璃窗,她站在室內(nèi)離窗子4

m的地方向外看,她能看到窗前面一幢樓房的面積有____m2(樓之間的距離為20

m).三、解答題(共78分)19.(8分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.(1)求該反比例函數(shù)的解析式;(2)若△ABC的面積為6,求直線AB的表達式.20.(8分)如圖,已知拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)點是第一象限內(nèi)拋物線上的一個動點(與點、不重合),過點作軸于點,交直線于點,連接、.設(shè)點的橫坐標為,的面積為.求關(guān)于的函數(shù)解析式及自變量的取值范圍,并求出的最大值;(3)已知為拋物線對稱軸上一動點,若是以為直角邊的直角三角形,請直接寫出點的坐標.21.(8分)甲、乙、丙三位同學(xué)在知識競賽問答環(huán)節(jié)中,采用抽簽的方式?jīng)Q定出場順序.求甲比乙先出場的概率.22.(10分)在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.(1).從A、D、E、F四點中任意取一點,以所取的這一點及B、C為頂點三角形,則所畫三角形是等腰三角形的概率是;(2).從A、D、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).23.(10分)如圖1是超市的手推車,如圖2是其側(cè)面示意圖,已知前后車輪半徑均為5cm,兩個車輪的圓心的連線AB與地面平行,測得支架AC=BC=60cm,AC、CD所在直線與地面的夾角分別為30°、60°,CD=50cm.(1)求扶手前端D到地面的距離;(2)手推車內(nèi)裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的寬度.(本題答案均保留根號)24.(10分)如圖,在△ABC中,AB=10,AC=8,D、E分別是AB、AC上的點,且AD=4,∠BDE+∠C=180°.求AE的長.25.(12分)已知拋物線y=x2+(1﹣2a)x﹣2a(a是常數(shù)).(1)證明:該拋物線與x軸總有交點;(2)設(shè)該拋物線與x軸的一個交點為A(m,0),若2<m≤5,求a的取值范圍;(3)在(2)的條件下,若a為整數(shù),將拋物線在x軸下方的部分沿x軸向上翻折,其余部分保持不變,得到一個新圖象G,請你結(jié)合新圖象,探究直線y=kx+1(k為常數(shù))與新圖象G公共點個數(shù)的情況.26.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為多少?

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)圓周角定理和正切函數(shù)的定義,即可求解.【詳解】∵∠1與∠2是同弧所對的圓周角,∴∠1=∠2,∴tan∠1=tan∠2=,故選A.本題主要考查圓周角定理和正切函數(shù)的定義,把∠1的正切值化為∠2的正切值,是解題的關(guān)鍵.2、B【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,∠CDE=∠BAC,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)求出∠CDA=45°,根據(jù)∠ADE=∠CDA﹣∠CDE,即可求解.【詳解】∵Rt△ABC繞其直角頂點C按順時針方向旋轉(zhuǎn)90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故選:B.本題主要考查旋轉(zhuǎn)的性質(zhì)和等腰直角三角形的判定和性質(zhì)定理,掌握等腰直角三角形的性質(zhì),是解題的關(guān)鍵,3、A【分析】關(guān)于x的一元二次方程x2+2x+k=0有兩個相等的實數(shù)根,可知其判別式為0,據(jù)此列出關(guān)于k的不等式,解答即可.【詳解】根據(jù)一元二次方程根與判別式的關(guān)系,要使得x2﹣2+k=0有兩個相等實根,只需要△=(-2)2-4k=0,解得k=1.故本題正確答案為A.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.4、B【分析】先比較平均數(shù)得到甲組和乙組產(chǎn)量較好,然后比較方差得到乙組的狀態(tài)穩(wěn)定.【詳解】因為甲組、乙組的平均數(shù)丙組比丁組大,而乙組的方差比甲組的小,所以乙組的產(chǎn)量比較穩(wěn)定,所以乙組的產(chǎn)量既高又穩(wěn)定,故選B.本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.5、C【解析】分析:根據(jù)函數(shù)圖象的上下關(guān)系,結(jié)合交點的橫坐標找出不等式y(tǒng)1<y1的解集,由此即可得出結(jié)論.詳解:觀察函數(shù)圖象,發(fā)現(xiàn):

當x<-6或0<x<1時,直線y1=x+1的圖象在雙曲線y1=的圖象的下方,

∴當y1<y1時,x的取值范圍是x<-6或0<x<1.

故選C.點睛:考查了反比例函數(shù)與一次函數(shù)的交點問題,解題的關(guān)鍵是依據(jù)函數(shù)圖象的上下關(guān)系解不等式.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)函數(shù)圖象位置的上下關(guān)系結(jié)合交點的坐標,找出不等式的解集是關(guān)鍵.6、A【分析】由三角形面積公式可求C'E的長,由相似三角形的性質(zhì)可求解.【詳解】解:如圖,過點C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延長C'E交A'B'于點F,連接AC',BC',CC',∵點C'與△ABC的內(nèi)心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,

∴C'E=C'G=C'H,

∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,

∵將Rt△ABC平移到△A'B'C'的位置,

∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3

∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'

∴△C'MN∽△C'A'B',∴C陰影部分=C△C'A'B'×=(5+3+4)×=5.故選A.本題考查了三角形的內(nèi)切圓和內(nèi)心,相似三角形的判定和性質(zhì),熟練運用相似三角形的性質(zhì)是本題的關(guān)鍵.7、B【分析】本題要比較y1,y2,y3的大小,由于y1,y2,y3是拋物線上三個點的縱坐標,所以可以根據(jù)二次函數(shù)的性質(zhì)進行解答:先求出拋物線的對稱軸,再由對稱性得A點關(guān)于對稱軸的對稱點A'的坐標,再根據(jù)拋物線開口向下,在對稱軸右邊,y隨x的增大而減小,便可得出y1,y2,y3的大小關(guān)系.【詳解】∵拋物線y=﹣(x+1)2+m,如圖所示,∴對稱軸為x=﹣1,∵A(﹣2,y1),∴A點關(guān)于x=﹣1的對稱點A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右邊y隨x的增大而減小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故選:B.本題考查了二次函數(shù)圖象上點的坐標的特征,解題的關(guān)鍵是能畫出二次函數(shù)的大致圖象,據(jù)圖判斷.8、A【分析】根據(jù)一元二次方程根的判別式以及一元二次方程的解法,逐一判斷選項,即可.【詳解】A.x2=0,解得:x1=x2=0,故本選項符合題意;B.x2=4,解得:x1=2,x2=-2,故本選項不符合題意;C.x2﹣2x﹣1=0,,有兩個不相等的根,故不符合題意;D.x2+1=0,方程無解,故不符合題意.故選A.本題主要考查一元二次方程根的判別式,熟練掌握一元二次方程根的判別式的意義,是解題的關(guān)鍵.9、D【分析】拋物線的形狀只是與a有關(guān),a相等,形狀就相同.【詳解】y=1(x﹣1)1+3中,a=1.故選D.本題考查了拋物線的形狀與a的關(guān)系,比較簡單.10、A【分析】摸到紅球的頻率穩(wěn)定在25%,即=25%,即可即解得a的值【詳解】解:∵摸到紅球的頻率穩(wěn)定在25%,∴=25%,解得:a=1.故本題選A.本題考查用頻率估計概率,熟記公式正確計算是本題的解題關(guān)鍵11、A【分析】設(shè)紅球的個數(shù)為x,通過藍球的概率建立一個關(guān)于x的方程,解方程即可.【詳解】設(shè)袋子中有紅球x個,根據(jù)題意得,解得x=1.經(jīng)檢驗x=1是原方程的解.答:袋子中有紅球有1個.故選:A.本題主要考查隨機事件的概率,掌握隨機事件概率的求法是解題的關(guān)鍵.12、C【解析】令x=0,則y=3,拋物線與y軸的交點為(0,3).【詳解】解:令x=0,則y=3,

∴拋物線與y軸的交點為(0,3),

故選:C.本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì),會求函數(shù)與坐標軸的交點是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【解析】分析:首先確定陰影的面積在整個面積中占的比例,根據(jù)這個比例即可求出螞蟻停在陰影部分的概率.詳解:∵正方形被等分成9份,其中陰影方格占4份,

∴當螞蟻停下時,停在地板中陰影部分的概率為,

故答案為.點睛:此題主要考查了幾何概率,用到的知識點為:概率=相應(yīng)的面積與總面積之比.14、90°【分析】先根據(jù)騎自行車上學(xué)的學(xué)生有12人占25%,求出總?cè)藬?shù),再根據(jù)步行上學(xué)的學(xué)生人數(shù)所對應(yīng)的圓心角的度數(shù)為所占的比例乘以360度,即可求出答案.【詳解】解:根據(jù)題意得:總?cè)藬?shù)是:12÷25%=48人,所以乘車部分所對應(yīng)的圓心角的度數(shù)為360°×=90°;故答案為:90°.此題主要考查了扇形統(tǒng)計圖,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息,列出算式是解決問題的關(guān)鍵.15、【分析】連接,交對稱軸于點,先通過解方程,得,,通過,得,于是利用勾股定理可得到的長;再根據(jù)三角形中位線性質(zhì)得,,所以;由點在拋物線對稱軸上,、兩點為拋物線與軸的交點,得;利用兩點之間線段最短得到此時的值最小,其最小值為的長,從而得到的最小值.【詳解】如圖,連接,交對稱軸于點,則此時最小.∵拋物線與軸交于,兩點,與軸交于點,∴當時,,解得:,,即,,當時,,即,∴,∴,∵點、、分別是、、的中點,∴,,∴,∵點在拋物線對稱軸上,、兩點為拋物線與軸的交點,∴,∴,∴此時的值最小,其最小值為,∴的最小值為:.故答案為:.此題主要考查了拋物線與軸的交點以及利用軸對稱求最短路線,用到了三角形中位線性質(zhì)和勾股定理.正確得出點位置,以及由拋物線的對稱性得出是解題關(guān)鍵.16、3或9或或【分析】先根據(jù)圓周角定理及正弦定理得到BC=8,再根據(jù)勾股定理求出AC=6,再分情況討論,從而求出AE.【詳解】∵AB是半圓O的直徑,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵點D為BC的中點,∴CD=4.∵∠ACB=∠DCE=90,①當∠CDE1=∠ABC時,△ACB∽△E1CD,如圖∴,即,∴CE1=3,∵點E1在射線AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②當∠CE3D=∠ABC時,△ABC∽△DE3C,如圖∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案為:3或9或或.此題考查相似三角形的判定及性質(zhì),當三角形的相似關(guān)系不是用相似符號連接時,一定要分情況來確定兩個三角形的對應(yīng)關(guān)系,這是解此題容易錯誤的地方.17、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根據(jù),得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當點C、O、P在同一直線上時,CP最小,構(gòu)建圓,利用勾股定理,即可得解.【詳解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當點C、O、P在同一直線上時,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案為.此題主要考查直角三角形中的動點綜合問題,解題關(guān)鍵是找到點P的位置.18、108【解析】考點:平行投影;相似三角形的應(yīng)用.分析:在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,依此進行分析.解答:解:根據(jù)題意:她能看到窗前面一幢樓房的圖形與玻璃窗的外形應(yīng)該相似,且相似比為=6,故面積的比為36;故她能看到窗前面一幢樓房的面積有36×3=108m1.點評:本題考查了平行投影、視點、視線、位似變換、相似三角形對應(yīng)高的比等于相似比等知識點.注意平行投影特點:在同一時刻,不同物體的物高和影長成比例三、解答題(共78分)19、(1)y;(2)yx+1.【解析】(1)把A的坐標代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關(guān)于b的方程,求得b的值,進而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設(shè)AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長是解題的關(guān)鍵.20、(1);(2),當時,有最大值,最大值;(2),【解析】(1)由拋物線與x軸的兩個交點坐標可設(shè)拋物線的解析式為y=a(x+1)(x-2),將點C(0,2)代入拋物線解析式中即可得出關(guān)于a一元一次方程,解方程即可求出a的值,從而得出拋物線的解析式;(2)設(shè)直線BC的函數(shù)解析式為y=kx+b.結(jié)合點B、點C的坐標利用待定系數(shù)法求出直線BC的函數(shù)解析式,再由點D橫坐標為m找出點D、點E的坐標,結(jié)合兩點間的距離公式以及三角形的面積公式求出函數(shù)解析式,利用配方法將S關(guān)于m的函數(shù)關(guān)系式進行變形,從而得出結(jié)論;(2)先求出對稱軸,設(shè)M(1,y),然后分分BM為斜邊和CM為斜邊兩種情況求解即可;【詳解】解:(1)∵拋物線與x軸交于A(-1,0)、B(2,0)兩點,∴設(shè)拋物線的解析式為y=a(x+1)(x-2),又∵點C(0,2)在拋物線圖象上,∴2=a×(0+1)×(0-2),解得:a=-1.∴拋物線解析式為y=-(x+1)(x-2)=-x2+2x+2.∴拋物線解析式為;(2)設(shè)直線的函數(shù)解析式為,∵直線過點,,∴,解得,∴,設(shè),,∴,∴,∵,∴當時,有最大值,最大值;(2)∵,∴對稱軸為直線x=1,設(shè)M(1,y),則CM2=1+(y-2)2=y2-6y+10,BM2=y2+(1-2)2=y2+4,BC2=9+9=18.當BM為斜邊時,則y2-6y+10+18=y2+4,解得y=4,此時M(1,4);當CM為斜邊時,y2+4+18=y2-6y+10,解得y=-2,此時M(1,-2);綜上可得點的坐標為,.本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)解析式、兩點間的距離公式、三角形的面積公式以及勾股定理,解題的關(guān)鍵:(1)待定系數(shù)法求函數(shù)解析式;(2)求出S與m的關(guān)系式;(2)分類討論.21、【分析】首先根據(jù)題意用列舉法列出所有等可能的結(jié)果與甲比乙先出場的情況,再利用概率公式求解即可求得答案.【詳解】解:甲、乙、丙三位同學(xué)采用抽簽的方式?jīng)Q定出場順序,所有可能出現(xiàn)的結(jié)果有:(甲,乙,丙)、(甲、丙、乙)(乙,甲,丙)、(乙,丙,甲)(丙,甲,乙)、(丙,乙,甲)共有6種,它們出現(xiàn)的可能性相同.所有的結(jié)果中,滿足“甲比乙先出場”(記為事件)的結(jié)果有3中,所以本題考查了列舉法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)(2)【分析】(1)根據(jù)從A、D、E、F四個點中任意取一點,一共有4種可能,只有選取D點時,所畫三角形是等腰三角形,即可得出答案;(2)利用樹狀圖得出從A、D、E、F四個點中先后任意取兩個不同的點,一共有12種可能,進而得出以點A、E、B、C為頂點及以D、F、B、C為頂點所畫的四邊形是平行四邊形,即可求出概率.【詳解】解:(1)根據(jù)從A、D、E、F四個點中任意取一點,一共有4種可能,只有選取D點時,所畫三角形是等腰三角形,所畫三角形是等腰三角形的概率P=;故答案為(2)用“樹狀圖”或利用表格列出所有可能的結(jié)果:∵以點A、E、B、C為頂點及以D、F、B、C為頂點所畫的四邊形是平行四邊形,∴所畫的四邊形是平行四邊形的概率P==.考點:列表法與樹狀圖法;等腰三角形的判定;平行四邊形的判定.23、(1)35+;(2)坐板EF的寬度為()cm.【分析】(1)如圖,構(gòu)造直角三角形Rt△AMC、Rt△CGD然后利用解直角三角形分段求解扶手前端D到地面的距離即可;(2)由已知求出△EFH中∠EFH=60°,∠EHD=45°,然后由HQ+FQ=FH=20cm解三角形即可求解.【詳解】解:(1)如圖2,過C作CM⊥AB,垂足為M,又過D作DN⊥AB,垂足為N,過C作CG⊥DN,垂足為G,則∠DCG=60°,∵AC=BC=60cm,AC、CD所在直線與地面的夾角分別為30°、60°,∴∠A=∠B=30°,則在Rt△AMC中,CM==30cm.∵在Rt△CGD中,sin∠DCG=,CD=50cm,∴DG=CDsin∠DCG=50sin60°==,又GN=CM=30cm,前后車輪半徑均為5cm,∴扶手前端D到地面的距離為DG+GN+5=+30+5=35+(cm).(2)∵EF∥CG∥AB,∴∠EFH=∠DCG=60°,∵CD=50cm,椅子的支點H到點C的距離為10cm,DF=20cm,∴FH=20cm,如圖2,過E作EQ⊥FH,垂足為Q,設(shè)FQ=x,在Rt△EQF中,∠EFH=60°,∴EF=2FQ=2x,EQ=,在Rt△EQH中,∠EHD=45°,∴HQ=EQ=,∵HQ+FQ=FH=20cm,∴+x=20,解得x=,∴EF=2()=.答:坐板EF的寬度為()cm.本題考查了解直角三角形的應(yīng)用,解題的難點在于從實際問題中抽象出數(shù)學(xué)基本圖形構(gòu)造適當?shù)闹苯侨切危y度較大.24、AE=5【分析】根據(jù)∠BDE+∠C=180°可得出C=A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論