2026屆山東省惠民縣數(shù)學(xué)九上期末統(tǒng)考模擬試題含解析_第1頁(yè)
2026屆山東省惠民縣數(shù)學(xué)九上期末統(tǒng)考模擬試題含解析_第2頁(yè)
2026屆山東省惠民縣數(shù)學(xué)九上期末統(tǒng)考模擬試題含解析_第3頁(yè)
2026屆山東省惠民縣數(shù)學(xué)九上期末統(tǒng)考模擬試題含解析_第4頁(yè)
2026屆山東省惠民縣數(shù)學(xué)九上期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆山東省惠民縣數(shù)學(xué)九上期末統(tǒng)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.等腰直角△ABC內(nèi)有一點(diǎn)P,滿足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.則CP的長(zhǎng)等于()A. B.2 C.2 D.32.用一條長(zhǎng)為40cm的繩子圍成一個(gè)面積為acm2的長(zhǎng)方形,a的值不可能為()A.20 B.40 C.100 D.1203.對(duì)于二次函數(shù)y=(x﹣1)2+2的圖象,下列說(shuō)法正確的是()A.開口向下 B.對(duì)稱軸是x=﹣1 C.與x軸有兩個(gè)交點(diǎn) D.頂點(diǎn)坐標(biāo)是(1,2)4.如圖,在正方形網(wǎng)格中,已知的三個(gè)頂點(diǎn)均在格點(diǎn)上,則的正切值為()A. B. C. D.5.如圖,四點(diǎn)在⊙上,.則的度數(shù)為()A. B. C. D.6.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過(guò)點(diǎn)B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣367.如圖,△ABC中,AB=AC,∠ABC=70°,點(diǎn)O是△ABC的外心,則∠BOC的度數(shù)為()A.40° B.60° C.70° D.80°8.下列是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是()A. B. C. D.9.若關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則m的值可能是()A.3 B.2 C.1 D.010.如圖,點(diǎn)是內(nèi)一點(diǎn),,,點(diǎn)、、、分別是、、、的中點(diǎn),則四邊形的周長(zhǎng)是()A.24 B.21 C.18 D.14二、填空題(每小題3分,共24分)11.將拋物線向上平移一個(gè)單位后,又沿x軸折疊,得新的拋物線,那么新的拋物線的表達(dá)式是_____.12.寫出一個(gè)過(guò)原點(diǎn)的二次函數(shù)表達(dá)式,可以為____________.13.如圖,四邊形是半圓的內(nèi)接四邊形,是直徑,.若,則的度數(shù)為______.14.如圖,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交DE于點(diǎn)M和點(diǎn)N,則線段MN的長(zhǎng)為_____.15.一人乘雪橇沿坡比1:的斜坡筆直滑下,滑下的距離s(米)與時(shí)間t(秒)間的關(guān)系為s=10t+2t2,若滑到坡底的時(shí)間為4秒,則此人下降的高度為_______.16.若關(guān)于x的一元二次方程(a+3)x2+2x+a2﹣9=0有一個(gè)根為0,則a的值為_____.17.拋物線y=﹣x2+2x﹣5與y軸的交點(diǎn)坐標(biāo)為_____.18.若關(guān)于的方程和的解完全相同,則的值為________.三、解答題(共66分)19.(10分)在平面直角坐標(biāo)系中,已知拋物線y=x2﹣2ax+4a+2(a是常數(shù)),(Ⅰ)若該拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),求a的值及該拋物線與x軸另一交點(diǎn)坐標(biāo);(Ⅱ)不論a取何實(shí)數(shù),該拋物線都經(jīng)過(guò)定點(diǎn)H.①求點(diǎn)H的坐標(biāo);②證明點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).20.(6分)如圖,內(nèi)接于,,是的弦,與相交于點(diǎn),平分,過(guò)點(diǎn)作,分別交,的延長(zhǎng)線于點(diǎn)、,連接.(1)求證:是的切線;(2)求證:.21.(6分)如圖,在等邊△ABC中,把△ABC沿直線MN翻折,點(diǎn)A落在線段BC上的D點(diǎn)位置(D不與B、C重合),設(shè)∠AMN=α.(1)用含α的代數(shù)式表示∠MDB和∠NDC,并確定的α取值范圍;(2)若α=45°,求BD:DC的值;(3)求證:AM?CN=AN?BD.22.(8分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點(diǎn)D,CD=3,BD=4,則點(diǎn)D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關(guān)系,并說(shuō)明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內(nèi)接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內(nèi)心與外心之間的距離為.23.(8分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),∠EAD=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AFB,連接EF.(1)求證:EF=ED;(2)若AB=2,CD=1,求FE的長(zhǎng).24.(8分)如圖,在中,是高.矩形的頂點(diǎn)、分別在邊、上,在邊上,,,.求矩形的面積.25.(10分)如圖,點(diǎn)D是∠AOB的平分線OC上任意一點(diǎn),過(guò)D作DE⊥OB于E,以DE為半徑作⊙D,①判斷⊙D與OA的位置關(guān)系,并證明你的結(jié)論.②通過(guò)上述證明,你還能得出哪些等量關(guān)系?26.(10分)(1)計(jì)算:;(2)解方程:x2+3x—4=0.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】先利用定理求得,再證得,利用對(duì)應(yīng)邊成比例,即可求得答案.【詳解】如圖,∵∠BAC=90°,AB=AC,∴,,設(shè),則,如圖,∴,∴,∴,∴,∵,∴,∴,故選:B本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),熟練運(yùn)用相似三角形的判定和性質(zhì)是本題的關(guān)鍵.2、D【分析】設(shè)圍成面積為acm2的長(zhǎng)方形的長(zhǎng)為xcm,由長(zhǎng)方形的周長(zhǎng)公式得出寬為(40÷2﹣x)cm,根據(jù)長(zhǎng)方形的面積公式列出方程x(40÷2﹣x)=a,整理得x2﹣20x+a=0,由△=400﹣4a≥0,求出a≤100,即可求解.【詳解】設(shè)圍成面積為acm2的長(zhǎng)方形的長(zhǎng)為xcm,則寬為(40÷2﹣x)cm,依題意,得x(40÷2﹣x)=a,整理,得x2﹣20x+a=0,∵△=400﹣4a≥0,解得a≤100,故選D.3、D【解析】試題解析:二次函數(shù)y=(x-1)2+2的圖象開口向上,頂點(diǎn)坐標(biāo)為(1,2),對(duì)稱軸為直線x=1,拋物線與x軸沒有公共點(diǎn).故選D.4、D【分析】延長(zhǎng)交網(wǎng)格于,連接,得直角三角形ACD,由勾股定理得出、,由三角函數(shù)定義即可得出答案.【詳解】解:延長(zhǎng)交網(wǎng)格于,連接,如圖所示:則,,,的正切值;故選:D.本題考查了解直角三角形以及勾股定理的運(yùn)用;熟練掌握勾股定理,構(gòu)造直角三角形是解題的關(guān)鍵.5、B【分析】連接BO,由可得,則,由圓周角定理,得,即可得到答案.【詳解】解:如圖,連接BO,則∵,∴,∴,∵,∴;故選:B.本題考查了垂徑定理,以及圓周角定理,解題的關(guān)鍵是正確作出輔助線,得到.6、B【解析】解:∵O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,∴OA=5,AB∥OC,∴點(diǎn)B的坐標(biāo)為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過(guò)點(diǎn)B,∴﹣4=,得k=﹣32.故選B.本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關(guān)鍵在于根據(jù)A點(diǎn)坐標(biāo)求得OA的長(zhǎng),再根據(jù)菱形的性質(zhì)求得B點(diǎn)坐標(biāo),然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.7、D【分析】首先根據(jù)等腰三角形的性質(zhì)可得∠A的度數(shù),然后根據(jù)圓周角定理可得∠O=2∠A,進(jìn)而可得答案.【詳解】解:∵AB=AC,

∴∠ABC=∠ACB=70°,

∴∠A=180°?70°×2=40°,

∵點(diǎn)O是△ABC的外心,

∴∠BOC=40°×2=80°,

故選:D.此題主要考查了三角形的外接圓和外心,關(guān)鍵是掌握?qǐng)A周角定理:在同圓或等圓中,同弧所對(duì)的圓周角等于圓心角的一半.8、A【分析】軸對(duì)稱圖形:平面內(nèi),一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形;中心對(duì)稱圖形:在平面內(nèi),把一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心.根據(jù)中心對(duì)稱圖形和軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A選項(xiàng):是中心對(duì)稱圖形但不是軸對(duì)稱圖形,故本選項(xiàng)符合題意;B選項(xiàng):是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)不符合題意;C選項(xiàng):不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)不符合題意;D選項(xiàng):不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)不符合題意.故選A.本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.9、D【解析】由題意可知,該一元二次方程根的判別式的值大于零,即(-2)2-4m>0,∴m<1.對(duì)照本題的四個(gè)選項(xiàng),只有D選項(xiàng)符合上述m的取值范圍.故本題應(yīng)選D.10、B【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半,求出,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.【詳解】∵E、F、G、H分別是AB、AC、CD、BD的中點(diǎn),

∴,∴四邊形EFGH的周長(zhǎng),

又∵AD=11,BC=10,

∴四邊形EFGH的周長(zhǎng)=11+10=1.

故選:B.本題考查了三角形的中位線定理,熟記三角形的中位線平行于第三邊并且等于第三邊的一半是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】先確定拋物線y=x2﹣2的二次項(xiàng)系數(shù)a=1,頂點(diǎn)坐標(biāo)為(0,﹣2),向上平移一個(gè)單位后(0,﹣1),翻折后二次項(xiàng)系數(shù)a=-1,頂點(diǎn)坐標(biāo)變?yōu)椋?,1),然后根據(jù)頂點(diǎn)式寫出新拋物線的解析式.【詳解】拋物線y=x2﹣2的頂點(diǎn)坐標(biāo)為(0,﹣2),點(diǎn)(0,﹣2)向上平移一個(gè)單位所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為(0,﹣1),點(diǎn)(0,﹣1)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為(0,1),因?yàn)樾聮佄锞€的開口向下,所以新拋物線的解析式為y=﹣x2+1.故答案為:y=﹣x2+1.此題考查拋物線的平移規(guī)律:左加右減,上加下減,翻折口開口方向改變,但是大小沒變,因此二次項(xiàng)系數(shù)改變的只是符號(hào),正確掌握平移的規(guī)律并運(yùn)用解題是關(guān)鍵.12、y=1x1【分析】拋物線過(guò)原點(diǎn),因此常數(shù)項(xiàng)為0,可據(jù)此寫出符合條件的二次函數(shù)的表達(dá)式.【詳解】解:設(shè)拋物線的解析式為y=ax1+bx+c(a≠0);∵拋物線過(guò)原點(diǎn)(0,0),

∴c=0;

當(dāng)a=1,b=0時(shí),y=1x1.故答案是:y=1x1.(答案不唯一)主要考查了二次函數(shù)圖象上的點(diǎn)與二次函數(shù)解析式的關(guān)系.要求掌握二次函數(shù)的性質(zhì),并會(huì)利用性質(zhì)得出系數(shù)之間的數(shù)量關(guān)系.13、50【分析】連接AC,根據(jù)圓內(nèi)接四邊形的性質(zhì)求出,再利用圓周角定理求出,,計(jì)算即可.【詳解】解:連接AC,∵四邊形ABCD是半圓的內(nèi)接四邊形,∴∵DC=CB∴∵AB是直徑∴∴故答案為:50.本題考查的知識(shí)點(diǎn)有圓的內(nèi)接四邊形的性質(zhì)以及圓周角定理,熟記知識(shí)點(diǎn)是解題的關(guān)鍵.14、.【分析】根據(jù)三角形的面積公式求出BC邊上的高=3,根據(jù)△ADE∽△ABC,求出正方形DEFG的邊長(zhǎng)為2,根據(jù)等于高之比即可求出MN.【詳解】解:作AQ⊥BC于點(diǎn)Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC邊上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE邊上的高為1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案為.本題考查了相似三角形的判定和性質(zhì)以及正方形的性質(zhì),是一道綜合題目,難度較大,作輔助線AQ⊥BC是解題的關(guān)鍵.15、36m【分析】求滑下的距離,設(shè)出下降的高度表示出水平寬度,利用勾股定理即可求解.【詳解】解:當(dāng)t=4時(shí),s=10t+2t2=72,設(shè)此人下降的高度為x米,過(guò)斜坡頂點(diǎn)向地面作垂線,在直角三角形中,由勾股定理得:,解得:x=36,故答案為:36m.本題考查了解直角三角形的應(yīng)用理解坡比的意義,使用勾股定理,設(shè)未知數(shù),列方程求解.16、1【分析】將x=0代入原方程,結(jié)合一元二次方程的定義即可求得a的值.【詳解】解:根據(jù)題意,將x=0代入方程可得a2﹣9=0,解得:a=1或a=﹣1,∵a+1≠0,即a≠﹣1,∴a=1.故答案為:1.本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因?yàn)橹缓幸粋€(gè)未知數(shù)的方程的解也叫做這個(gè)方程的根,所以一元二次方程的解也稱為一元二次方程的根.17、(0,﹣5)【分析】要求拋物線與y軸的交點(diǎn),即令x=0,解方程.【詳解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,則拋物線y=﹣x2+2x﹣5與y軸的交點(diǎn)坐標(biāo)為(0,﹣5).故答案為(0,﹣5).本題考查了拋物線與軸的交點(diǎn)坐標(biāo),正確掌握令或令是解題的關(guān)鍵.18、1【分析】先分解因式,根據(jù)兩方程的解相同即可得出答案.【詳解】解:,,∵關(guān)于x的方程和的解完全相同,∴a=1,故答案為:1.本題考查了解一元二次方程,能正確用因式分解法解方程是解此題的關(guān)鍵.三、解答題(共66分)19、(Ⅰ)a=﹣,拋物線與x軸另一交點(diǎn)坐標(biāo)是(0,0);(Ⅱ)①點(diǎn)H的坐標(biāo)為(2,6);②證明見解析.【分析】(I)根據(jù)該拋物線與x軸的一個(gè)交點(diǎn)為(-1,0),可以求得的值及該拋物線與x軸另一交點(diǎn)坐標(biāo);(II)①根據(jù)題目中的函數(shù)解析式可以求得點(diǎn)H的坐標(biāo);②將題目中的函數(shù)解析式化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)即可證明點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).【詳解】(Ⅰ)∵拋物線y=x2﹣2ax+4a+2與x軸的一個(gè)交點(diǎn)為(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣,∴y=x2+x=x(x+1),當(dāng)y=0時(shí),得x1=0,x2=﹣1,即拋物線與x軸另一交點(diǎn)坐標(biāo)是(0,0);(Ⅱ)①∵拋物線y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不論a取何實(shí)數(shù),該拋物線都經(jīng)過(guò)定點(diǎn)(2,6),即點(diǎn)H的坐標(biāo)為(2,6);②證明:∵拋物線y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴該拋物線的頂點(diǎn)坐標(biāo)為(a,﹣(a﹣2)2+6),則當(dāng)a=2時(shí),﹣(a﹣2)2+6取得最大值6,即點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).本題考查拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì)、二次函數(shù)的最值、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.20、(1)詳見解析;(2)詳見解析.【分析】(1)根據(jù)圓的對(duì)稱性即可求出答案;(2)先證明△BCD∽△BDF,利用相似三角形的性質(zhì)可知:,利用BC=AC即可求證=AC?BF;【詳解】解:(1)∵,平分,∴,,∴是圓的直徑∵AB∥EF,∴,∵是圓的半徑,∴是的切線;(2)∵,∴,∴,∴,∴,∵,∴.本題主要考查了圓周角定理,切線的判定與性質(zhì),相似三角形的判定與性質(zhì),掌握?qǐng)A周角定理,切線的判定與性質(zhì),相似三角形的判定與性質(zhì)是解題的關(guān)鍵.21、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)見解析【分析】(1)利用翻折不變性,三角形內(nèi)角和定理求解即可解決問題.(2)設(shè)BM=x.解直角三角形用x表示BD,CD即可解決問題.(3)證明△BDM∽△CND,推出=,推出DM?CN=DN?BD可得結(jié)論.【詳解】(1)由翻折的性質(zhì)可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)設(shè)BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD?cos30°=x,∴MA=MD=x,∴BC=AB=x+x,∴CD=BC﹣BD=x﹣x,∴BD:CD=2x:(x﹣x)=+1.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴=,∴DM?CN=DN?BD,∵DM=AM,ND=AN,∴AM?CN=AN?BD.本題考查了翻折變換、解直角三角形以及相似三角形的判定與性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.22、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過(guò)點(diǎn)D分別作DE⊥BC于點(diǎn)E,DF⊥BA于點(diǎn)F由BD平分∠ABC可得DE=DF=,DF即為所求,(2)過(guò)點(diǎn)D分別作DE⊥BC于點(diǎn)E,DF⊥BA于點(diǎn)F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進(jìn)而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對(duì)角線,可得正方形邊長(zhǎng)為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點(diǎn),由切線長(zhǎng)定理可得,所以O(shè)N=5-4=1由面積法易得內(nèi)切圓半徑為2【詳解】解:(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過(guò)點(diǎn)D分別作DE⊥BC于點(diǎn)E,DF⊥BA于點(diǎn)F由BD平分∠ABC可得DE=DF=,DF即為所求(2)過(guò)點(diǎn)D分別作DE⊥BC于點(diǎn)E,DF⊥BA于點(diǎn)F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進(jìn)而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對(duì)角線,可得正方形邊長(zhǎng)為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點(diǎn),由切線長(zhǎng)定理可得,所以O(shè)N=5-4=1由面積法易得內(nèi)切圓半徑為2∴,故答案:(1)(2)AB+BC=2BE(3)本題主要考查角平分線、三角形全等及三角形內(nèi)心與外心的綜合,難度較大,需靈活運(yùn)用各知識(shí)求解.23、(1)見解析;(2)EF=.【解析】(1)由旋轉(zhuǎn)的性質(zhì)可求∠FAE=∠DAE=45°,即可證△AEF≌△AED,可得EF=ED;(2)由旋轉(zhuǎn)的性質(zhì)可證∠FBE=90°,利用勾股定理和方程的思想可求EF的長(zhǎng).【詳解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論