新疆昌吉州阜康二中學2026屆數(shù)學九上期末預測試題含解析_第1頁
新疆昌吉州阜康二中學2026屆數(shù)學九上期末預測試題含解析_第2頁
新疆昌吉州阜康二中學2026屆數(shù)學九上期末預測試題含解析_第3頁
新疆昌吉州阜康二中學2026屆數(shù)學九上期末預測試題含解析_第4頁
新疆昌吉州阜康二中學2026屆數(shù)學九上期末預測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

新疆昌吉州阜康二中學2026屆數(shù)學九上期末預測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在中,是的中點,,,則的長為()A. B.4 C. D.2.某超市一月份的營業(yè)額為200萬元,已知第一季度的總營業(yè)額共1000萬元,如果平均每月增長率為x,則由題意列方程應為()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.如圖,Rt△ABC中,∠B=90°,AB=3,BC=2,則cosA=()A. B. C. D.4.在Rt△ABC中,,如果∠A=,,那么線段AC的長可表示為().A.; B.; C.; D..5.下列方程中,關于x的一元二次方程是()A.x2﹣x(x+3)=0 B.a(chǎn)x2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=06.在同一坐標系中,一次函數(shù)y=ax+1與二次函數(shù)y=x2+a的圖像可能是()A. B. C. D.7.某藥品經(jīng)過兩次降價,每瓶零售價由168元降為108元,已知兩次降價的百分率相同,設每次降價的百分率為x,根據(jù)題意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1088.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.9.已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是()A.1 B.7 C.1或7 D.無法確定10.把拋物線向下平移1個單位再向右平移一個單位所得到的的函數(shù)拋物線的解析式是()A. B. C. D.二、填空題(每小題3分,共24分)11.二次函數(shù)y=﹣x2+bx+c的部分圖象如圖所示,由圖象可知,不等式﹣x2+bx+c<0的解集為______.12.某中學為了了解學生數(shù)學課程的學習情況,在3000名學生中隨機抽取200名,并統(tǒng)計這200名學生的某次數(shù)學考試成績,得到了樣本的頻率分布直方圖(如圖).根據(jù)頻率分布直方圖推測,這3000名學生在該次數(shù)學考試中成績小于60分的學生數(shù)是________.13.如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____.14.已知m為一元二次方程x2-3x-2020=0的一個根,則代數(shù)式2m2-6m+2的值為___________15.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向坐標軸作垂線段,已知S陰影=1,則S1+S2=_____.16.cos30°=__________17.若,則______.18.如圖,,,則的度數(shù)是__________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,拋物線的頂點坐標為,與軸交于點,與軸交于點,.(1)求二次函數(shù)的表達式;(2)過點作平行于軸,交拋物線于點,點為拋物線上的一點(點在上方),作平行于軸交于點,當點在何位置時,四邊形的面積最大?并求出最大面積.20.(6分)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.21.(6分)如圖,在矩形ABCD中,AB=2,E為BC上一點,且BE=1,∠AED=90°,將AED繞點E順時針旋轉(zhuǎn)得到,A′E交AD于P,D′E交CD于Q,連接PQ,當點Q與點C重合時,AED停止轉(zhuǎn)動.(1)求線段AD的長;(2)當點P與點A不重合時,試判斷PQ與的位置關系,并說明理由;(3)求出從開始到停止,線段PQ的中點M所經(jīng)過的路徑長.22.(8分)如圖,中,,以為直徑作,交于點,交的延長線于點,連接,.(1)求證:是的中點;(2)若,求的長.23.(8分)如圖,四邊形、、都是正方形.求證:;求的度數(shù).24.(8分)如圖所示,在方格紙中,△ABC的三個頂點及D,E,F(xiàn),G,H五個點分別位于小正方形的頂點上.(1)現(xiàn)以D,E,F(xiàn),G,H中的三個點為頂點畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是(只需要填一個三角形);(2)先從D,E兩個點中任意取一個點,再從F,G,H三個點中任意取兩個不同的點,以所取的這三個點為頂點畫三角形,畫樹狀圖求所畫三角形與△ABC面積相等的概率.25.(10分)如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽光照射下,在斜坡上的影長BC=6.5米,此時光線與水平線恰好成30°角,求大樹BD的高.(結(jié)果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)26.(10分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)相似三角形的判定和性質(zhì)定理和線段中點的定義即可得到結(jié)論.【詳解】解:∵∠ADC=∠BAC,∠C=∠C,

∴△BAC∽△ADC,

∴,

∵D是BC的中點,BC=6,

∴CD=3,

∴AC2=6×3=18,

∴AC=,

故選:D.本題考查相似三角形的判定和性質(zhì),線段中點的定義,熟練掌握相似三角形的判定和性質(zhì)是解題的關鍵.2、D【分析】根據(jù)增長率問題公式即可解決此題,二月為200(1+x),三月為200(1+x)2,三個月相加即得第一季度的營業(yè)額.【詳解】解:∵一月份的營業(yè)額為200萬元,平均每月增長率為x,∴二月份的營業(yè)額為200×(1+x),∴三月份的營業(yè)額為200×(1+x)×(1+x)=200×(1+x)2,∴可列方程為200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故選D.此題考察增長率問題類一元二次方程的應用,注意:第一季度指一、二、三月的總和.3、D【分析】根據(jù)勾股定理求出AC,根據(jù)余弦的定義計算得到答案.【詳解】由勾股定理得,AC===,則cosA===,故選:D.本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關鍵.4、B【分析】根據(jù)余弦函數(shù)是鄰邊比斜邊,可得答案.【詳解】解:由題意,得,,故選:.本題考查了銳角三角函數(shù)的定義,利用余弦函數(shù)的定義是解題關鍵.5、C【分析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】解:A、x2﹣x(x+3)=0,化簡后為﹣3x=0,不是關于x的一元二次方程,故此選項不合題意;B、ax2+bx+c=0,當a=0時,不是關于x的一元二次方程,故此選項不合題意;C、x2﹣2x﹣3=0是關于x的一元二次方程,故此選項符合題意;D、x2﹣2y﹣1=0含有2個未知數(shù),不是關于x的一元二次方程,故此選項不合題意;故選:C.此題主要考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.6、A【分析】本題可先由一次函數(shù)y=ax+1圖象得到字母系數(shù)的正負,再與二次函數(shù)y=x2+a的圖象相比較看是否一致.【詳解】解:A、由拋物線y軸的交點在y軸的負半軸上可知,a<0,由直線可知,a<0,正確;B、由拋物線與y軸的交點在y軸的正半軸上可知,a>0,二次項系數(shù)為負數(shù),與二次函數(shù)y=x2+a矛盾,錯誤;C、由拋物線與y軸的交點在y軸的負半軸上可知,a<0,由直線可知,a>0,錯誤;D、由直線可知,直線經(jīng)過(0,1),錯誤,故選A.考核知識點:一次函數(shù)和二次函數(shù)性質(zhì).7、A【分析】設每次降價的百分率為x,根據(jù)降價后的價格=降價前的價格(1-降價的百分率),則第一次降價后的價格是168(1-x),第二次后的價格是168(1-x)2,據(jù)此即可列方程求解.【詳解】設每次降價的百分率為x,根據(jù)題意得:168(1-x)2=1.故選A.此題主要考查了一元二次方程的應用,關鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關系,列出方程即可.8、A【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關鍵是推出∠CEF=∠CFE.9、C【分析】由于弦AB、CD的具體位置不能確定,故應分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖①,過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②當弦AB和CD在圓心異側(cè)時,如圖②,過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,EF=OF+OE=1,所以AB與CD之間的距離是1或1.故選:C.本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了勾股定理及分類討論的思想的應用.10、B【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行解答即可.【詳解】解:拋物線向下平移1個單位,得:,再向右平移1個單位,得:,即:,故選B.主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.二、填空題(每小題3分,共24分)11、x<?1或x>5.【分析】先利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標為(-1,0),然后寫出拋物線在x軸下方所對應的自變量的范圍即可.【詳解】拋物線的對稱軸為直線x=2,而拋物線與x軸的一個交點坐標為(5,0),所以拋物線與x軸的另一個交點坐標為(?1,0),所以不等式?x2+bx+c<0的解集為x<?1或x>5.故答案為x<?1或x>5.考點:二次函數(shù)圖象的性質(zhì)12、1人【分析】根據(jù)頻率分布直方圖,求出在該次數(shù)學考試中成績小于60分的頻率,再求成績小于60分的學生數(shù).【詳解】根據(jù)頻率分布直方圖,得在該次數(shù)學考試中成績小于60分的頻率是(0.002+0.006+0.012)×10=0.20∴在該次數(shù)學考試中成績小于60分的學生數(shù)是3000×0.20=1.故答案為:1.本題考查了頻率分布直方圖的應用問題,解題時應根據(jù)頻率分布直方圖提供的數(shù)據(jù),求出頻率,再求出學生數(shù),是基礎題.13、22015π【分析】連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知為圓的周長,再找出圓半徑的規(guī)律即可解題.【詳解】解:連接P1O1,P2O2,P3O3…,∵P1是⊙O1上的點,∴P1O1=OO1,∵直線l解析式為y=x,∴∠P1OO1=45°,∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,同理,PnOn垂直于x軸,∴為圓的周長,∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案為:22015π.本題考查了圖形類規(guī)律探索、一次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)以及弧長的計算,本題中準確找到圓半徑的規(guī)律是解題的關鍵.14、1【分析】由題意可得m2-3m=2020,進而可得2m2-6m=4040,然后整體代入所求式子計算即可.【詳解】解:∵m為一元二次方程x2-3x-2020=0的一個根,∴m2-3m-2020=0,∴m2-3m=2020,∴2m2-6m=4040,∴2m2-6m+2=4040+2=1.故答案為:1.本題考查了一元二次方程的解和代數(shù)式求值,熟練掌握基本知識、靈活應用整體思想是解題的關鍵.15、1.【分析】根據(jù)題意,想要求S1+S2,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所構(gòu)成的矩形的面積即可,而矩形的面積為雙曲線y=的系數(shù)k,由此即可求解.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,∴S1+S2=4+4﹣1×2=1.故答案為1.本題主要考查反比例函數(shù)系數(shù)k的幾何意義,解題的關鍵是熟練掌握根據(jù)反比例函數(shù)系數(shù)k的幾何意義求出矩形的面積.16、【分析】直接利用特殊角的三角函數(shù)值進而得出答案.【詳解】cos30°=.故答案為.本題主要考查了特殊角的三角函數(shù)值,準確記憶特殊角的三角函數(shù)值是解題的關鍵.17、【分析】利用“設法”表示出,然后代入等式,計算即可.【詳解】設,則:,∴,故答案為:.本題考查了比例的性質(zhì),利用“設法”表示出是解題的關鍵.18、【分析】根據(jù)三角形外角定理求解即可.【詳解】∵,且∴故填:.本題主要考查三角形外角定理,熟練掌握定理是關鍵.三、解答題(共66分)19、(1);(2)點的坐標為時,【分析】(1)根據(jù)題目已知條件,可以由頂點坐標及A點坐標先求出二次函數(shù)頂點式,進而轉(zhuǎn)化為一般式即可;(2)根據(jù)題意,先求出直線AB的解析式,再設出點P和D坐標,進而先得出四邊形的面積表達式,即可求得面積最大值.【詳解】(1)∵頂點坐標為,∴設拋物線解析式為,∵拋物線與軸交于點,∴,∴,∴,∴;(2)當時,,∴,,∴,,設直線的解析式為,∵,,∴,,∴直線的解析式為.設,∴,∴.∵,∴,∴,∵,∴,∵中,對稱軸為,∴當,即點的坐標為時,.本題主要考查了二次函數(shù)解析式及四邊形面積的最值,熟練掌握解析式的求法以及最值的求法是解決本題的關鍵,在求最值的時候注意將對稱軸與自變量的取值范圍進行對比,進而判斷是在何處取最大值.20、樹高為5.5米【解析】根據(jù)兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數(shù)據(jù)計算即得BC的長,由AB=AC+BC,即可求出樹高.【詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.21、(1)5;(2)∥,理由見解析;(3)【分析】(1)求出AE=,證明△ABE∽△DEA,由可求出AD的長;(2)過點E作EF⊥AD于點F,證明△PEF∽△QEC,再證△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',則結(jié)論得證;(3)由(2)知PQ∥A′D′,取A′D′的中點N,可得出∠PEM為定值,則點M的運動路徑為線段,即從AD的中點到DE的中點,由中位線定理可得出答案.【詳解】解:(1)∵AB=2,BE=1,∠B=90°,∴AE===,∵∠AED=90°,∴∠EAD+∠ADE=90°,∵矩形ABCD中,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∴∠BAE=∠ADE,∴△ABE∽△DEA,∴,∴,∴AD=5;(2)PQ∥A′D′,理由如下:∵,∠AED=90°∴==2,∵AD=BC=5,∴EC=BC﹣BE=5﹣1=4,過點E作EF⊥AD于點F,則∠FEC=90°,∵∠A'ED'=∠AED=90°,∴∠PEF=∠CEQ,∵∠C=∠PFE=90°,∴△PEF∽△QEC,∴,∵,∴,∴PQ∥A′D′;(3)連接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ為直角三角形,M為PQ中點,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴=為定值,又∵EF=AB=2,∴MN為定值,即M的軌跡為平行于AE的線段,∵M初始位置為AD中點,停止位置為DE中點,∴M的軌跡為△ADE的中位線,∴線段PQ的中點M所經(jīng)過的路徑長==.本題考查了矩形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理,平行線的判定,中位線定理等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關鍵.22、(1)詳見解析;(2).【分析】(1)根據(jù)題意得出,再根據(jù)三線合一即可證明;(2)在中,根據(jù)已知可求得,,,再證明,得出,代入數(shù)值即可得出CE.【詳解】(1)證明:是的直徑,,又是中點.(2)解:,,,,,,.,.本題考查了相似三角形的判定及性質(zhì),熟練掌握定理是解題的關鍵.23、(1)見解析;(2)45°.【分析】(1)設正方形的邊長為a,求出AC的長為a,再求出△ACF與△GCA中∠ACF的兩邊的比值相等,根據(jù)兩邊對應成比例、夾角相等,兩三角形相似,即可判定△ACF與△GCA相似;(2)根據(jù)相似三角形的對應角相等可得∠1=∠CAF,再根據(jù)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,∠2+∠CAF=∠ACB=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論