版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴陽市2026屆數學九年級第一學期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.方程的兩根分別為()A.=-1,=2 B.=1,=2 C.=―l,=-2 D.=1,=-22.如圖,點A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半徑為2,則圖中陰影部分的面積是()A. B. C. D.3.如圖,在△ABC與△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,連接BD、CE,若AC︰BC=3︰4,則BD︰CE為()A.5︰3 B.4︰3 C.︰2 D.2︰4.同學們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;(3)連接BD,BC.根據以上作圖過程及所作圖形,下列結論中錯誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=5.如圖,在邊長為1的小正方形組成的網格中,△ABC的三個頂點均在格點上,則tanA的值為()A. B. C. D.6.在中,,已知和,則下列關系式中正確的是()A. B. C. D.7.如圖,的直徑的長為,弦長為,的平分線交于,則長為()A.7 B.7 C.8 D.98.若是方程的解,則下列各式一定成立的是()A. B. C. D.9.如圖,直角坐標平面內有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.10.在平面直角坐標系中,反比例函數的圖象經過點(1,3),則的值可以為A. B. C. D.二、填空題(每小題3分,共24分)11.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是_______.(填序號)12.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.13.寫出一個過原點的二次函數表達式,可以為____________.14.如果不等式組的解集是x<a﹣4,則a的取值范圍是_______.15.如圖,鐵道口的欄桿短臂長1m,長臂長16m.當短臂端點下降0.5m時,長臂端點升高______16.已知二次函數的圖象與軸的一個交點為,則它與軸的另一個交點的坐標是__________.17.已知,則_____.18.已知△ABC中,tanB=,BC=6,過點A作BC邊上的高,垂足為點D,且滿足BD:CD=2:1,則△ABC面積的所有可能值為____________.三、解答題(共66分)19.(10分)解一元二次方程:x2﹣5x+6=1.20.(6分)如圖,在中,,點E在邊BC上移動(點E不與點B、C重合),滿足,且點D、F分別在邊AB、AC上.(1)求證:;(2)當點E移動到BC的中點時,求證:FE平分.21.(6分)如圖(1),矩形中,,,點,分別在邊,上,點,分別在邊,上,,交于點,記.(1)如圖(2)若的值為1,當時,求的值.(2)若的值為3,當點是矩形的頂點,,時,求的值.22.(8分)在平面直角坐標系中(如圖),已知二次函數(其中a、b、c是常數,且a≠0)的圖像經過點A(0,-3)、B(1,0)、C(3,0),聯結AB、AC.(1)求這個二次函數的解析式;(2)點D是線段AC上的一點,聯結BD,如果,求tan∠DBC的值;(3)如果點E在該二次函數圖像的對稱軸上,當AC平分∠BAE時,求點E的坐標.23.(8分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應的函數表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內,A、N是位于直線BM同側的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.24.(8分)如圖,△OAP是等腰直角三角形,∠OAP=90°,點A在第四象限,點P坐標為(8,0),拋物線y=ax2+bx+c經過原點O和A、P兩點.(1)求拋物線的函數關系式.(2)點B是y軸正半軸上一點,連接AB,過點B作AB的垂線交拋物線于C、D兩點,且BC=AB,求點B坐標;(3)在(2)的條件下,點M是線段BC上一點,過點M作x軸的垂線交拋物線于點N,求△CBN面積的最大值.25.(10分)已知關于x的一元二次方程有兩個不相等的實數根,且為正整數,求的值.26.(10分)如圖,等腰中,,點是邊上一點,在上取點,使(1)求證:;(2)若,求的長.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】(x-1)(x+1)=0,可化為:x-1=0或x+1=0,解得:x1=1,x1=-1.故選D2、B【分析】連接BC、OD、OC、BD,過O點作OE⊥CD于E點,先證△COD是等邊三角形,再根據陰影部分的面積是S扇形COD-S△COD計算可得.【詳解】如圖所示,連接BC、OD、OC、BD,過O點作OE⊥CD于E點,
∵∠A=40°,AB=AC,
∴∠ABC=70°,
∵CD∥AB,
∴∠ACD=∠A=40°,
∴∠ABD=∠ACD=40°,
∴∠DBC=30°,
則∠COD=2∠DBC=60°,
又OD=OC,
∴△COD是等邊三角形,∴OD=CD=2,DE=∴
則圖中陰影部分的面積是S扇形COD-S△COD
故選:B.本題主要考查扇形面積的計算,解題的關鍵是掌握等腰三角形和等邊三角形的判定與性質、圓周角定理、扇形的面積公式等知識點.3、A【解析】因為∠ACB=90°,AC︰BC=3︰4,則因為∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,則,.故選A.4、D【分析】由作法得CA=CB=CD=AB,根據圓周角定理得到∠ABD=90°,點C是△ABD的外心,根據三角函數的定義計算出∠D=30°,則∠A=60°,利用特殊角的三角函數值即可得到結論.【詳解】由作法得CA=CB=CD=AB,故B正確;∴點B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯誤,故選:D.本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和解直角三角形.5、D【分析】由三角函數定義即可得出答案.【詳解】如圖所示:由圖可得:AD=3,CD=4,∴tanA.故選:D.本題考查了解直角三角形.構造直角三角形是解答本題的關鍵.6、B【分析】根據三角函數的定義即可作出判斷.【詳解】∵在Rt△ABC中,∠C=90°,∠C的對邊為c,∠A的對邊為a,∴sinA=,∴a=c?sinA,.故選:B.考查了銳角三角函數的定義,正確理解直角三角形邊角之間的關系.在直角三角形中,如果已知一邊及其中的一個銳角,就可以表示出另外的邊.7、B【解析】作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據角平分線的性質得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=7.【詳解】作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB,∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG,∵AC=6,BC=8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7,故選B.本題綜合考查了圓周角的性質,圓心角、弧、弦的對等關系,全等三角形的判定,角平分線的性質等,綜合性較強,有一定的難度,正確添加輔助線、熟練應用相關知識是解題的關鍵.8、A【分析】本題根據一元二次方程的根的定義求解,把x=1代入方程ax2+bx+c=1得,a+b+c=1.【詳解】∵x=1是方程ax2+bx+c=1的解,∴將x=1代入方程得a+b+c=1,故選:B.本題考查的是一元二次方程的根即方程的解的定義.解該題的關鍵是要掌握一元二次方程ax2+bx+c=1中幾個特殊值的特殊形式:x=1時,a+b+c=1;x=?1時,a?b+c=1.9、B【分析】作PA⊥x軸于點A,構造直角三角形,根據三角函數的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.本題考查的知識點是銳角三角函數的定義,解題關鍵是熟記三角函數的定義.10、B【分析】把點(1,3)代入中即可求得k值.【詳解】解:把x=1,y=3代入中得,∴k=3.故選:B.本題考查了用待定系數法求反比例函數的解析式,能理解把已知點的坐標代入解析式是解題關鍵.二、填空題(每小題3分,共24分)11、③【分析】根據過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.【詳解】①、在角∠BAC內作作∠CAD=∠B,交BC于點D,根據余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;②、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;③、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;④、以AB為直徑作圓,該圓交BC于點D,根據圓周角定理,過AD兩點作直線該直線垂直于BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;故答案為:③.此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關鍵.12、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.13、y=1x1【分析】拋物線過原點,因此常數項為0,可據此寫出符合條件的二次函數的表達式.【詳解】解:設拋物線的解析式為y=ax1+bx+c(a≠0);∵拋物線過原點(0,0),
∴c=0;
當a=1,b=0時,y=1x1.故答案是:y=1x1.(答案不唯一)主要考查了二次函數圖象上的點與二次函數解析式的關系.要求掌握二次函數的性質,并會利用性質得出系數之間的數量關系.14、a≥﹣3.【分析】根據口訣“同小取小”可知不等式組的解集,解這個不等式即可.【詳解】解這個不等式組為x<a﹣4,則3a+2≥a﹣4,解這個不等式得a≥﹣3故答案a≥﹣3.此題考查解一元一次不等式組,掌握運算法則是解題關鍵15、8m【分析】由題意證△ABO∽△CDO,可得,即,解之可得.【詳解】如圖,
由題意知∠BAO=∠C=90°,
∵∠AOB=∠COD,
∴△ABO∽△CDO,
∴,即,
解得:CD=8,
故答案為:8m.本題主要考查相似三角形的應用,熟練掌握相似三角形的判定與性質是解題的關鍵.16、【分析】確定函數的對稱軸=-2,即可求出.【詳解】解:函數的對稱軸=-2,則與軸的另一個交點的坐標為(-3,0)故答案為(-3,0)此題主要考查了拋物線與x軸的交點和函數圖像上點的坐標的特征,熟練掌握二次函數與坐標軸的交點、二次函數的對稱軸是解題的關鍵.17、【分析】由已知可得x、y的關系,然后代入所求式子計算即可.【詳解】解:∵,∴,∴.故答案為:.本題考查了比例的性質和代數式求值,屬于基本題型,掌握求解的方法是關鍵.18、8或1.【解析】試題分析:如圖1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC?AD=×6×=8;如圖2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC?AD=×6×8=1;綜上,△ABC面積的所有可能值為8或1,故答案為8或1.考點:解直角三角形;分類討論.三、解答題(共66分)19、x1=2,x2=2【分析】根據因式分解法解一元二次方程,即可求解.【詳解】∵x2﹣5x+6=1,∴(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2,x2=2.本題主要考查解一元二次方程,掌握因式分解法解方程,是解題的關鍵.20、(1)證明見解析;(2)證明見解析【分析】(1)根據等腰三角形的性質可得∠B=∠C,再由∠DEF+∠CEF=∠B+∠BDE,,即可判定,根據相似三角形的判定方法即可得△BDE∽△CEF;(2)由相似三角形的性質可得,再由點E是BC的中點,可得BE=CE,即可得,又因,即可判定△CEF∽△EDF,根據相似三角形的性質可得,即可證得即FE平分∠DFC.【詳解】解:(1)因為AB=AC,所以∠B=∠C,因為∠DEF+∠CEF=∠B+∠BDE,所以,所以△BDE∽△CEF;(2)因為△BDE∽△CEF,所以,因為點E是BC的中點,所以BE=CE,即,所以,又,故△CEF∽△EDF,所以,即FE平分∠DFC.21、(1)1;(2)或【分析】(1)作于,于,設交于點.證明,即可解決問題.(2)連接,.由,,推出,推出,由,推出,,設,則,,,接下來分兩種情形①如圖2中,當點與點重合時,點恰好與重合.②如圖3中,當點與重合,分別求解即可.【詳解】解:(1)如圖,作于,于,設交于點.四邊形是正方形,,,,,,,,,,,,,.(2)連接,,,,,,,,∴,,,,①如圖,當點與點重合時,點恰好與重合,作于.,,,,.②如圖,當點與點重合,作于,則,,,,,,,,,綜上所述,的值為或本題屬于相似形綜合題,考查了正方形的性質,全等三角形的判定和性質,矩形的性質,相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會用分類討論的思想思考問題,屬于中考壓軸題.22、(1);(2);(3)E(2,)【分析】(1)直接利用待定系數法,把A、B、C三點代入解析式,即可得到答案;(2)過點D作DH⊥BC于H,在△ABC中,設AC邊上的高為h,利用面積的比得到,然后求出DH和BH,即可得到答案;(3)延長AE至x軸,與x軸交于點F,先證明△OAB∽△OFA,求出點F的坐標,然后求出直線AF的方程,即可求出點E的坐標.【詳解】解:(1)將A(0,-3)、B(1,0)、C(3,0)代入得,解得,∴此拋物線的表達式是:.(2)過點D作DH⊥BC于H,在△ABC中,設AC邊上的高為h,則,又∵DH//y軸,∴.∵OA=OC=3,則∠ACO=45°,∴△CDH為等腰直角三角形,∴.∴.∴tan∠DBC=.(3)延長AE至x軸,與x軸交于點F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC∠BAC=45°∠BAC,∠OFA=∠OCA∠FAC=45°∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴.∴OF=9,即F(9,0);設直線AF的解析式為y=kx+b(k≠0),可得,解得,∴直線AF的解析式為:,將x=2代入直線AF的解析式得:,∴E(2,).本題考查了相似三角形的判定和性質,二次函數的性質,求二次函數的解析式,等腰直角三角形的判定和性質,求一次函數的解析式,解題的關鍵是掌握二次函數的圖像和性質,以及正確作出輔助線構造相似三角形.23、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉化得到AM=BN,設點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側,∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點的橫坐標相同,且BH=MH,∵M是拋物線上一點,∴可設點M的坐標為(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴點N的橫坐標為﹣4,可設直線AC:y=kx﹣3,則0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,當x=﹣4時,y=﹣(﹣4)﹣3=1,∴點N的坐標為(﹣4,1).本題主要考查二次函數的圖象與性質,還涉及到全等三角形的判定及其性質、三角形面積公式等知識點,綜合性較強,解題的關鍵是熟練掌握二次函數的圖象與性質.24、(1);(2);(3).【分析】(1)先根據是等腰直角三角形,和點P的坐標求出點A的坐標,再利用待定系數法即可求得;(2)設點,如圖(見解析),過點C作CH垂直y軸于點H,過點A作AQ垂直y軸于點Q,易證明,可得,則點C坐標為,將其代入題(1)中的拋物線函數關系式即可得;(3)如圖,延長NM交CH于點E,則,先通過點B、C求出直線BC的函數關系式,因點N在拋物線上,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《能“變化”的蔬果》教案
- 魯教版四年級下冊難忘的一課教案
- 寫作想說愛你也容易市公開課金獎市賽課教案
- 外墻裝飾腳手架施工方案教案(2025-2026學年)
- 幼兒園中班《我為春天辦畫展》教案
- 高三歷史復習通史體例近代科學興起和啟蒙運動教案(2025-2026學年)
- 安全教育培訓交底教案
- 胃癌化療護理中的疼痛管理
- 小學英語閱讀理解考試策略總結
- 未來五年包金棒、桿行業(yè)直播電商戰(zhàn)略分析研究報告
- 護理人文關懷與醫(yī)患溝通技巧
- 北京市順義區(qū)2024-2025學年八年級上學期期末考試英語試卷
- 《化工企業(yè)可燃液體常壓儲罐區(qū)安全管理規(guī)范》解讀課件
- 2025至2030等靜壓行業(yè)發(fā)展研究與產業(yè)戰(zhàn)略規(guī)劃分析評估報告
- 聽障兒童家庭康復訓練
- 2024年考研政治真題及考點解析
- 2025中國南水北調集團新能源投資有限公司社會招聘崗位擬聘人員筆試歷年參考題庫附帶答案詳解
- 零碳園區(qū)評價技術規(guī)范
- 質子泵抑制劑臨床使用指南2023
- 大學生財務管理專業(yè)職業(yè)規(guī)劃
- 檢驗科標本前處理課件
評論
0/150
提交評論