2026屆江西省吉安市永新縣九年級數(shù)學第一學期期末學業(yè)水平測試試題含解析_第1頁
2026屆江西省吉安市永新縣九年級數(shù)學第一學期期末學業(yè)水平測試試題含解析_第2頁
2026屆江西省吉安市永新縣九年級數(shù)學第一學期期末學業(yè)水平測試試題含解析_第3頁
2026屆江西省吉安市永新縣九年級數(shù)學第一學期期末學業(yè)水平測試試題含解析_第4頁
2026屆江西省吉安市永新縣九年級數(shù)學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆江西省吉安市永新縣九年級數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在平行四邊形中,,,那么的值等于()A. B. C. D.2.如圖,在平面直角坐標系中,點在函數(shù)的圖象上,點在函數(shù)的圖象上,軸于點.若,則的值為()A. B. C. D.3.一個菱形的邊長為,面積為,則該菱形的兩條對角線的長度之和為()A. B. C. D.4.下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是()A.B.C.D.5.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為()A.1 B. C.2 D.6.在公園內(nèi),牡丹按正方形種植,在它的周圍種植芍藥,如圖反映了牡丹的列數(shù)(n)和芍藥的數(shù)量規(guī)律,那么當n=11時,芍藥的數(shù)量為()A.84株B.88株C.92株D.121株7.如圖,在四邊形中,對角線,相交于點,且,.若要使四邊形為菱形,則可以添加的條件是()A. B. C. D.8.某商場對上周女裝的銷售情況進行了統(tǒng)計,如下表,經(jīng)理決定本周進女裝時多進一些紅色的,可用來解釋這一現(xiàn)象的統(tǒng)計知識是()顏色黃色綠色白色紫色紅色數(shù)量(件)10018022080520A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差9.若點是直線上一點,已知,則的最小值是()A.4 B. C. D.210.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.2二、填空題(每小題3分,共24分)11.如果,那么=_____.12.設(shè)O為△ABC的內(nèi)心,若∠A=48°,則∠BOC=____°.13.如圖,拋物線y=﹣x2+2x+k與x軸交于A,B兩點,交y軸于點C,則點B的坐標是_____;點C的坐標是_____.14.若、是方程的兩個實數(shù)根,代數(shù)式的值是______.15.如圖,等腰△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于點D,則的值等于_____.16.如圖,與⊙相切于點,,,則⊙的半徑為__________.17.從一個不透明的口袋中隨機摸出一球,再放回袋中,不斷重復上述過程,一共摸了150次,其中有50次摸到黑球,已知口袋中僅有黑球5個和白球若干個,這些球除顏色外,其他都一樣,由此估計口袋中有___個白球.18.如圖,,如果,,,那么___________.三、解答題(共66分)19.(10分)如圖,在中,,,點均在邊上,且.(1)將繞A點逆時針旋轉(zhuǎn),可使AB與AC重合,畫出旋轉(zhuǎn)后的圖形,在原圖中補出旋轉(zhuǎn)后的圖形.(2)求和的度數(shù).20.(6分)如圖,已知拋物線經(jīng)過點和點,與軸交于點.(1)求此拋物線的解析式;(2)若點是直線下方的拋物線上一動點(不點,重合),過點作軸的平行線交直線于點,設(shè)點的橫坐標為.①用含的代數(shù)式表示線段的長;②連接,,求的面積最大時點的坐標;(3)設(shè)拋物線的對稱軸與交于點,點是拋物線的對稱軸上一點,為軸上一點,是否存在這樣的點和點,使得以點、、、為頂點的四邊形是菱形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.21.(6分)如圖,已知和中,,,,,;(1)請說明的理由;(2)可以經(jīng)過圖形的變換得到,請你描述這個變換;(3)求的度數(shù).22.(8分)已知關(guān)于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β(1)求m的取值范圍;(2)若α+β+αβ=1.求m的值.23.(8分)如圖所示,在中,,,,是邊的中點,交于點.(1)求的值;(2)求.24.(8分)已知關(guān)于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程有一個根為負數(shù),求的取值范圍.25.(10分)解方程:(1);(2).26.(10分)已知二次函數(shù)(是常數(shù)).(1)當時,求二次函數(shù)的最小值;(2)當,函數(shù)值時,以之對應(yīng)的自變量的值只有一個,求的值;(3)當,自變量時,函數(shù)有最小值為-10,求此時二次函數(shù)的表達式.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由題意首先過點A作AF⊥DB于F,過點D作DE⊥AB于E,設(shè)DF=x,然后利用勾股定理與含30°角的直角三角形的性質(zhì),表示出個線段的長,再由三角形的面積,求得x的值,繼而求得答案.【詳解】解:過點A作AF⊥DB于F,過點D作DE⊥AB于E.設(shè)DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,則AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,∴,∴,解得:,∴.故選:D.本題考查平行四邊形的性質(zhì)和三角函數(shù)以及勾股定理.解題時注意掌握輔助線的作法以及注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.2、A【分析】設(shè)A的橫坐標為a,則縱坐標為,根據(jù)題意得出點B的坐標為,代入y=(x<0)即可求得k的值.【詳解】解:設(shè)A的橫坐標為a,則縱坐標為,

∵AC=3BC,∴B的橫坐標為-a,

∵AB⊥y軸于點C,∴AB∥x軸,∴B(-a,),

∵點B在函數(shù)y=(x<0)的圖象上,∴k=-a×=-1,

故選:A.本題主要考查了反比例函數(shù)圖象上點的坐標特征,表示出點B的坐標是解題的關(guān)鍵.3、C【分析】如圖,根據(jù)菱形的性質(zhì)可得,,,再根據(jù)菱形的面積為,可得①,由邊長結(jié)合勾股定理可得②,由①②兩式利用完全平方公式的變形可求得,進行求得,即可求得答案.【詳解】如圖所示:四邊形是菱形,,,,面積為,①菱形的邊長為,②,由①②兩式可得:,,,即該菱形的兩條對角線的長度之和為,故選C.本題考查了菱形的性質(zhì),菱形的面積,勾股定理等,熟練掌握相關(guān)知識是解題的關(guān)鍵.4、B【解析】根據(jù)勾股定理,AB==2,BC==,AC==,所以△ABC的三邊之比為:2:=1:2:,A、三角形的三邊分別為2,=,=3,三邊之比為2::3=::3,故本選項錯誤;B、三角形的三邊分別為2,4,=2,三邊之比為2:4:2=1:2:,故本選項正確;C、三角形的三邊分別為2,3,=,三邊之比為2:3:,故本選項錯誤;D、三角形的三邊分別為=,=,4,三邊之比為::4,故本選項錯誤.故選B.5、D【分析】先由圓周角定理求出∠BOC的度數(shù),再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數(shù)的定義即可求出CD的長,進而可得出BC的長.【詳解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,過點O作OD⊥BC于點D,∵OD過圓心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故選D.本題考查的是圓周角定理、垂徑定理及銳角三角函數(shù)的定義,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.6、B【解析】解:由圖可得,芍藥的數(shù)量為:4+(2n﹣1)×4,∴當n=11時,芍藥的數(shù)量為:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故選B.點睛:本題考查規(guī)律型:圖形的變化類,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中圖形的變化規(guī)律.7、D【分析】根據(jù)對角線互相平分的四邊形是平行四邊形可得四邊形是平行四邊形,再根據(jù)菱形的判定定理和矩形的判定定理逐一分析即可.【詳解】解:∵在四邊形中,,∴四邊形是平行四邊形若添加,則四邊形是矩形,故A不符合題意;若添加,則四邊形是矩形,故B不符合題意;若添加,與菱形的對角線互相垂直相矛盾,故C不符合題意;若添加則四邊形是菱形,故D符合題意.故選D.此題考查的是平行四邊形的判定、矩形的判定和菱形的判定,掌握平行四邊形的判定定理、矩形的判定定理和菱形的判定定理是解決此題的關(guān)鍵.8、C【解析】在決定本周進女裝時多進一些紅色的,主要考慮的是各色女裝的銷售的數(shù)量,而紅色上周銷售量最大.【詳解】解:在決定本周進女裝時多進一些紅色的,主要考慮的是各色女裝的銷售的數(shù)量,而紅色上周銷售量最大.由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故考慮的是各色女裝的銷售數(shù)量的眾數(shù).

故選:C.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.9、B【分析】根據(jù)題意先確定點B在哪個位置時的最小值,先作點A關(guān)于直線CD的對稱點E,點B、E、O三點在一條直線上,再根據(jù)題意,連結(jié)OE與CD的交點就是點B,求出OE的長即為所求.【詳解】解:在y=-x+2中,當x=0時,y=2,當y=0時,0=-x+2,解得x=2,

∴直線y=-x+2與x的交點為C(2.0),與y軸的交點為D(0,2),如圖,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,

∴∠OCD=45°,∴A(0,-2),∴OA=OC=2

連接AC,如圖,

∵OA⊥OC,

∴△OCA是等腰直角三角形,

∴∠OCA=45°,

∴∠ACD=∠OCA+∠OCD=90°,

∴.AC⊥CD,

延長AC到點E,使CE=AC,連接BE,作EF⊥軸于點F,

則點E與點A關(guān)于直線y=-x+2對稱,∠EFO=∠AOC=90,

點O、點B、點E三點共線時,OB+AB取最小值,最小值為OE的長,

在△CEF和△CAO中,

∴△CEF≌OCAO(AAS),

∴EF=OA=2,CF=OC=2

∴OF=OC+CF=4,

即OB+AB的最小值為.故選:B本題考查的是最短路線問題,找最短路線是解題關(guān)鍵.找一點的對稱點連接另一點和對稱點與對稱軸的交點就是B點.10、D【解析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】試題解析:設(shè)a=2t,b=3t,故答案為:12、1【詳解】解:∵點O是△ABC的內(nèi)切圓的圓心,故答案為1.13、(﹣1,1)(1,3)【分析】根據(jù)圖象可知拋物線y=﹣x2+2x+k過點(3,1),從而可以求得k的值,進而得到拋物線的解析式,然后即可得到點B和點C的坐標.【詳解】解:由圖可知,拋物線y=﹣x2+2x+k過點(3,1),則1=﹣32+2×3+k,得k=3,∴y=﹣x2+2x+3=﹣(x﹣3)(x+1),當x=1時,y=1+1+3=3;當y=1時,﹣(x﹣3)(x+1)=1,∴x=3或x=﹣1,∴點B的坐標為(﹣1,1),點C的坐標為(1,3),故答案為:(﹣1,1),(1,3).本題考查了二次函數(shù)圖像上點的坐標特征,二次函數(shù)與坐標軸的交點問題,二次函數(shù)與x軸的交點橫坐標是ax2+bx+c=1時方程的解,縱坐標是y=1.14、1【分析】先對所求代數(shù)式進行變形為,然后將代入方程中求出的值,根據(jù)根與系數(shù)的關(guān)系求出的值,最后代入即可求解.【詳解】∵是方程的根∴∴∵、是方程的兩個實數(shù)根∴原式=故答案為:1.本題主要考查一元二次方程的根,根與系數(shù)的關(guān)系,掌握根與系數(shù)的關(guān)系,能夠?qū)λ蟠鷶?shù)式進行適當變形是解題的關(guān)鍵.15、【分析】先證△ABC和△BDC都是頂角為36°的等腰三角形,然后證明△BDC∽△ABC,根據(jù)相似三角形的性質(zhì)即可得出結(jié)論.【詳解】∵在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB=72°.∵BD平分∠ABC,∴∠DBC=∠ABD=36°,∴AD=BD,∴∠BDC=72°,∴BD=BC,∴△ABC和△BDC都是頂角為36°的等腰三角形.設(shè)CD=x,AD=y,∴BC=BD=y.∵∠C=∠C,∠DBC=∠A=36°,∴△BDC∽△ABC,∴,∴,∴,解得:(負數(shù)舍去),∴.故答案為:.本題考查了相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.16、【解析】與⊙相切于點,得出△ABO為直角三角形,再由勾股定理計算即可.【詳解】解:連接OB,∵與⊙相切于點,∴OB⊥AB,△ABO為直角三角形,又∵,,由勾股定理得故答案為:本題考查了切線的性質(zhì),通過切線可得垂直,進而可應(yīng)用勾股定理計算,解題的關(guān)鍵是熟知切線的性質(zhì).17、1【分析】先由“頻率=頻數(shù)÷數(shù)據(jù)總數(shù)”計算出頻率,再由簡單事件的概率公式列出方程求解即可.【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設(shè)口袋中大約有x個白球,則,解得.故答案為:1.考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.關(guān)鍵是得到關(guān)于黑球的概率的等量關(guān)系.18、1【分析】由于l1∥l2∥l3,根據(jù)平行線分線段成比例得到,然后把數(shù)值代入求出DF.【詳解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案為:1本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.三、解答題(共66分)19、(1)見解析;(2),.【分析】(1)以C為圓心BD為半徑作弧,與以A為圓心AD為半徑作弧的交點即為G點,然后連線即可得解;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠CAG=∠BAD,∠ACG=∠ABD,然后根據(jù)題意即可得各角的大小.【詳解】(1)△ACG如圖:(2)∵,,∴∠B+∠ACB=90°,∠BAD+∠CAE=45°,又∵為繞A點逆時針旋轉(zhuǎn)所得,∴∠CAG=∠BAD,∠ACG=∠ABD,∴,.本題主要考查畫旋轉(zhuǎn)圖形,旋轉(zhuǎn)的性質(zhì),解此題的關(guān)鍵在于熟練掌握其知識點.20、(1)y=x2﹣4x+1;(2)①用含m的代數(shù)式表示線段PD的長為﹣m2+1m;②△PBC的面積最大時點P的坐標為(,﹣);(1)存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形.點M的坐標為M1(2,1),M2(2,1﹣2),M1(2,1+2).【分析】(1)根據(jù)已知拋物線y=ax2+bx+1(a≠0)經(jīng)過點A(1,0)和點B(1,0)代入即可求解;

(2)①先確定直線BC解析式,根據(jù)過點P作y軸的平行線交直線BC于點D,即可用含m的帶上書表示出P和D的坐標進而求解;

②用含m的代數(shù)式表示出△PBC的面積,可得S是關(guān)于m的二次函數(shù),即可求解;

(1)根據(jù)(1)中所得二次函數(shù)圖象和對稱軸先得點E的坐標即可寫出點三個位置的點M的坐標.【詳解】(1)∵拋物線y=ax2+bx+1(a≠0)經(jīng)過點A(1,0)和點B(1,0),與y軸交于點C,∴,解得,∴拋物線解析式為y=x2﹣4x+1;(2)①設(shè)P(m,m2﹣4m+1),將點B(1,0)、C(0,1)代入得直線BC解析式為yBC=﹣x+1.∵過點P作y軸的平行線交直線BC于點D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.答:用含m的代數(shù)式表示線段PD的長為﹣m2+1m.②S△PBC=S△CPD+S△BPD=OB?PD=﹣m2+m=﹣(m﹣)2+.∴當m=時,S有最大值.當m=時,m2﹣4m+1=﹣.∴P(,﹣).答:△PBC的面積最大時點P的坐標為(,﹣).(1)存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形.

根據(jù)題意,點E(2,1),

∴EF=CF=2,

∴EC=2,

根據(jù)菱形的四條邊相等,

∴ME=EC=2,∴M(2,1-2)或(2,1+2)

當EM=EF=2時,M(2,1)∴點M的坐標為M1(2,1),M2(2,1﹣2),M1(2,1+2).本題考查了二次函數(shù)與方程、幾何知識的綜合應(yīng)用,解這類問題關(guān)鍵是善于將函數(shù)問題轉(zhuǎn)化為方程問題,善于利用幾何圖形的有關(guān)性質(zhì)、定理和二次函數(shù)的知識,并注意挖掘題目中的一些隱含條件.21、(1)見解析(2)繞點順時針旋轉(zhuǎn),可以得到(3)【解析】(1)先利用已知條件∠B=∠E,AB=AE,BC=EF,利用SAS可證△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通過觀察可知△ABC繞點A順時針旋轉(zhuǎn)25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根據(jù)三角形外角的性質(zhì)可求∠AMB.【詳解】∵,,,∴,∴,,∴,∴;通過觀察可知繞點順時針旋轉(zhuǎn),可以得到;由知,,∴.本題利用了全等三角形的判定、性質(zhì),三角形外角的性質(zhì),等式的性質(zhì)等.22、(1)m≥﹣34;(2)m的值為2【解析】(1)根據(jù)方程有兩個相等的實數(shù)根可知△>1,求出m的取值范圍即可;(2)根據(jù)根與系數(shù)的關(guān)系得出α+β與αβ的值,代入代數(shù)式進行計算即可.【詳解】(1)由題意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根與系數(shù)的關(guān)系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1應(yīng)舍去,m的值為2.本題考查的是根與系數(shù)的關(guān)系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=﹣ba,x1x2=c23、(1);(2)【分析】(1)首先證明∠ACE=∠CBD,在△BCD中,根據(jù)正切的定義即可求解;

(2)過A作AC的垂線交CE的延長線于P,利用平行線的性質(zhì)列出比例式即可解決問題.【詳解】解:(1)由,,得.在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論