2025年企業(yè)生成式AI風險:保險業(yè)的作用研究報告_第1頁
2025年企業(yè)生成式AI風險:保險業(yè)的作用研究報告_第2頁
2025年企業(yè)生成式AI風險:保險業(yè)的作用研究報告_第3頁
2025年企業(yè)生成式AI風險:保險業(yè)的作用研究報告_第4頁
2025年企業(yè)生成式AI風險:保險業(yè)的作用研究報告_第5頁
已閱讀5頁,還剩81頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

GenAIRisksforBusinesses:Exploringtheroleforinsurance

October2025

ASSOCIATION

G\GENEVA

GenAIRisksforBusinesses:

Exploringtheroleforinsurance

Ruo(Alex)Jia

DirectorDigitalTechnologies,GenevaAssociation

AssociateProfessorofInsurance,PekingUniversity

Contributingauthors:

MartinEling

DirectoroftheInstituteofInsuranceEconomicsand

ProfessorofInsuranceManagement,UniversityofSt.Gallen

TianyangWang

ProfessorofFinance,ColoradoStateUniversity

1

GenevaAssociation

TheGenevaAssociationwascreatedin1973andistheonlyglobalassociationof

insurancecompanies;ourmembersareinsuranceandreinsuranceChiefExecutive

Officers(CEOs).Basedonrigorousresearchconductedincollaborationwithour

members,academicinstitutionsandmultilateralorganisations,ourmissionisto

identifyandinvestigatekeytrendsthatarelikelytoshapeorimpacttheinsurance

industryinthefuture,highlightingwhatisatstakefortheindustry;develop

recommendationsfortheindustryandforpolicymakers;provideaplatformtoour

membersandotherstakeholderstodiscussthesetrendsandrecommendations;

andreachouttoglobalopinionleadersandinfluentialorganisationstohighlight

thepositivecontributionsofinsurancetobetterunderstandingrisksandtobuilding

resilientandprosperouseconomiesandsocieties,andthusamoresustainableworld.

Photocredits:

Coverpage–Unsplash

GenevaAssociationpublications:

PamelaCorn,DirectorCommunications

HannahDean,Editor&ContentManager

JooinShin,DigitalContent&DesignManager

Suggestedcitation:GenevaAssociation.2025.

GenAIRisksforBusinesses:Exploringtheroleforinsurance.

Author:Ruo(Alex)Jia;Contributingauthors:MartinEling;TianyangWang.October.

?GenevaAssociation,2025Allrightsreserved

2

Contents

Acknowledgements4

Foreword5

Executivesummary6

1.Introduction8

1.1GenerativeAI:Definitionandapplications9

1.2Gen-AI-inducedrisks11

1.3Researchquestionandcontributions16

2.DemandforGen-AI-relatedinsurance:Abusinesscustomersurvey17

2.1ApplicationofGenAIinbusiness19

2.2AwarenessandperceptionofGenAIrisks21

2.3DemandforGen-AI-relatedinsurance22

3.SupplyofGen-AI-relatedinsurance26

3.1InsurabilityofGen-AI-relatedrisks27

3.2Emerginginsurancesolutions32

4.Conclusion,outlook,andrecommendations36

Appendix1:ExistingAIriskclassifications40

Appendix2:InsurabilityofGenAIrisks(extended)41

References43

3

4

ACKNOWLEDGEMENTS

ThisreportwaspreparedundertheguidanceoftheGenevaAssociation’sDigitalTechnologiesworkinggroup,sponsoredbyBiancaTetteroo,ChairoftheExecutiveBoardofAchmea.

Wearegratefultothefollowingexpertsandexecutiveswhomadethemselvesavailableforinterviewsorprovidededitorialcontributions:

?TomoAsaka(TokioMarine)

?BartBoonandRenéWissing(Achmea)

?ColonnellaEmanuele(EdgeGroup)

?SophieFarhaneandEléonoreJacquemin(AXA)

?MatthewGabriel(Manulife)

?JesusGonzalez(Aon)

?AtsushiIzu(Dai-ichiLife)

?ChristophKrieg(Peak3)

?YunlongLIU(PICC)

?PaulLloydandRobertMilanPorsch(AIAGroup)

?HugoSantaMaria(Fidelidade)

?LamiaElMarzouki(AXAXL)

?DennisNoordhoek,DarrenL.Pain,andKai-UweSchanz(GenevaAssociation)

?FrankSchmid(GenRe)

?JoanSchmit(UniversityofWisconsin-Madison)

?BillSchwegler(Transamerica)

?SimonTorrance(EmbeddedFinance&InsuranceStrategies)

?JingXIAO(PingAn)

ThereportalsobenefittedfromdiscussionsattheGenevaAssociation’s2024ProgrammeonRegulationandSupervision(PROGRES)and2024DigitalTechnologiesConference.

Finally,weextendourdeepestthankstotheGenevaAssociation’sEditorialCommitteeandAssociatesfortheirsupportandfeedback,aswellastoPieralbertoTreccani(formerlyoftheGenevaAssociation)andXinyuFAN,QinyuLI,andYunfeiYANG(PekingUniversity)fortheirvaluableresearchassistance.

Foreword

Inmomentsofprofoundtechnologicaltransformation,weoftenfaceaparadox:thetoolsthatpromisetoelevateuscanalsochallengeusinunexpectedways.GenerativeAI

demandsbothstrategicanticipationandhuman-centredstewardship.

Thisreportisourcontributiontoafast-evolvingconversationabouthowto

understand,manage,andinsureagainstthenewclassesofriskthatGenAIcreatesoramplifies.Fromcybersecuritythreatstointellectualpropertychallenges,from

workforcedisruptiontoliabilityuncertainty,arisklandscapethatgoesbeyondtraditionalcategorisationisemerging.

Togroundourinsightsinreal-worldexperience,weconductedaglobalsurveyof600businessrepresentativesinvolvedincorporateinsurancedecision-making,acrossthelargestsixinsurancemarkets.Oneclearfindingstandsout:morethan90%of

respondentsseeaneedforinsurancecoverageforGenAIrisks,withtwothirdswillingtopaymoreinpremiumsforit.Thissignalsbothurgencyandopportunity.

TheinsuranceindustryhasacriticalroletoplayinofferingprotectionandinshapingresponsibleGenAIadoption.Byapproachingthesechallengescollaboratively–withtechnologyproviders,regulators,andbusinessesalike–andwithcaution,wecan

helpensurethatthebenefitsofGenAIarerealisedsafelyandsustainably.

JadAriss

ManagingDirector

5

6

Executivesummary

AdoptionofGenAIheightensoperational,ethical,andcybersecurityrisks,spurringdemandfor

insuranceamongbusinesses.

BusinessesarerapidlyintegratingGenerativeAI(GenAI)

intobothcustomer-facingproductsandservicesand

theirinternaloperations.Thisintroducesnewriskssuchasdefectiveoutputs,biasedrecommendations,intellec-tualpropertyinfringements,andcybersecurityconcerns.TheserisksbecomeparticularlyprominentwhenGenAImodelshallucinateorreplicateprotectedcontent.

GenAIintroducesbothbenefitsandriskstobusinesses.

ThisreportexploresGen-AI-relatedrisksandassessesbusinesses’awarenessanddemandforrelated

insurance.Buildingonestablishedframeworks,we

classifyGenAIrisksintosevendomains:operational,

cybersecurity&privacy,ethical,regulatory,reputational,workforce,andESG.TheseemphasisehowGenAI

amplifiesorcreatesexposuresbeyondtraditionalriskcategories.

ToevaluateriskawarenessandinsurancedemandfrombusinessesthatuseGenAI,theGenevaAssociation

commissionedasurveyof600corporateinsurance

decision-makers/influencersacrossthesixlargest

insurancemarkets(China,France,Germany,Japan,theUK,andtheUS).ThesurveyresultsrevealwidespreadGenAIadoption,thoughperceivedusefulnessvaries

byregion–itishighestinChinaandtheUS–reflectingdifferinglevelsofdigitalmaturityandorganisational

culture.

BusinessesfacesignificantGenAIimplementation

hurdles,particularlytalentshortages,poordataquality,andinternalresistance.Theprimarychallengesvary

acrossmarkets,influencedbydifferinglevelsofwilling-nesstoadoptGenAI.

Cybersecurityrisksemergeasthetopconcernofbusi-nesses,citedbyoverhalfofsurveyedfirms,followed

bythird-partyliabilitiestoclientsandsuppliersandthenoperationaldisruption.Reputationaldamagerankslowerdespiteitspotentialforlong-termimpact.

Morethan90%ofrespondentsexpressaneedfor

insurancecoveragetailoredtoAI/GenAIthreats;over

twothirdswouldpayatleast10%moreinpremiums

forexplicitinsurancepolicyextensionsthatcover

Gen/AIrelatedrisks.Demandisparticularlystrong

amongmediumandlargeenterprises,inthetechnologyandfinancesectors,andinregionswithhigherGenAIadoption.Additionally,highGenAIriskexposureand

highseverityofpastGenAIfailuresdriveinsurancedemand,suggestingpotentialadverseselection.

Demandforinsurancethatcovers

GenAIrisksishigh,particularlyamongmediumandlargefirmsandinthe

technologyandfinancesectors.

Onthesupplyside,applyingBerliner’sinsurability

frameworkrevealsinsurabilitychallenges,atleastin

theshortterm.GenAIrisksmayleadtolargepotentiallosses.AsitisdifficultforinsurerstoverifyGenAIrisksandhowbusinessesmanagethem,Gen-AI-related

insurancemayexperienceseriousinformationasym-

metry.Insurersmaythereforebereluctanttoofferhighcoveragelimits,asintheearlydaysofcyberinsurance.

InsurersarerespondingtoGenAIrisksbyadapting

cyberandliabilitypoliciestoincludeGen-AI-related

causesofloss;parametrictriggersanddue-diligence

protocolsarebeingtestedtostreamlineunderwriting

andclaimsprocesses;andselectedstandaloneAIinsur-ancesolutionsthatintegratevarioustypesofcoverageintoasinglepolicyindicatetheemergenceofanascent

7

market,thoughitremainstooearlytosaywhether

existinginsuranceproductsornewstandalonesolutionswillcometodominatetheGenAIriskmarket.

InsurersareadaptingcyberandliabilitypoliciestoincludeGen-AI-relatedrisks,whilestandalonecoverageisalso

emerging.

TokeeppacewithGenAIinnovation,insurersshould

proactivelydefineGenAI’sriskboundariesandbegin

pilotingmodularcoverageextensions,beforeloss

eventsforcereactiveresponses.Insurersmayconsiderpartneringwithtechnologyprovidersandregulatorstoco-developriskassessmentframeworksforGenAI,

embedcontinuousmonitoringinpolicyterms,and

exploresimulation-basedmodelling.Suchcollaborationwouldharmoniseethicalstandards,clarifycoverage

terms,andstrengthentheinsuranceindustry’srole

insafeguardingandsupportingthedevelopmentandadoptionofGenAI.

1Introduction

9

Introduction

GenAIpromisestransformativegainsinproductivityandcreativity,yetitsopacityandautonomyintroduceriskswithfew

historicalparallels.

1.1GenerativeAI:Definitionandapplications

GenerativeAI(GenAI),isasubsetofartificialintelli-

gencethatcancreateoriginalcontentsuchastext,

images,voices,videos,andtheircombinationsin

responsetouserrequests.1GenAIisarevolutionary

digitaltechnologythathasthepotentialtofundamentallyreshapeproductionprocessesineconomies,much

likeearlierbreakthroughssuchasthesteamengine,electricity,andtheinternet.

GenAIisarevolutionarydigital

technologythathasthepotentialtofundamentallyreshapeproductionacrosseconomies.

GenAIbuildsonmanyofthestatisticaladvances

underpinningtraditionalAI(seeBox1).InGenAImodels–especiallylargelanguagemodels(LLMs)–thecore

taskistopredictthenexttoken(e.g.awordorphrase)inasequence,giventhecontextofallprevioustokens.Thissequentialtoken-by-tokenpredictionenables

theGenAImodeltogeneratecoherent,contextually

relevanttextorothercontentthatappearsfluidand

human-like.TraditionalAItypicallyinvolvestraditionalmachinelearningtechniquessuchasclassificationorregression,wherethemodelistrainedtomappotentialpredictorsdirectlytoafixedtargetvariable(e.g.fore-castingtomorrow’stemperature).

Box1:GenAIvs.traditionalAI

GenAIinvolvespredictingthenexttokeninasequence.Thisprocessinvolvesoptimisinganobjectivefunction,whichguidesthemodelingeneratingcoherentand

contextuallyrelevanttext.Commonobjectivefunctionsincludemaximisingthelikelihoodofthenexttokengiventheprecedingsequenceorminimisingthedifference

betweengeneratedandtargetsequences.Optimisationtechniqueslikegradientdescentareusedtofine-tunethemodel’sparameterstoachievethisobjective.The

enginebehindGenAIisdeeplearning,anadvancedtypeofmachinelearningbasedonneuralnetworks,whichcanprocessunstructureddataandextract

featuresfromdataautomatically.3

GenAIdiffersfromtraditionalAIinitsabilitytocreate

entirelynewcontentratherthanmerelyanalysingdataandmakingpredictionsbasedonpre-existingpatterns.2

TraditionalAIlearnsfromextensivedatasetstoidentifypatterns.Itsprimarystrengthliesinprocessingstruc-tureddata.TraditionalAIisclosertoclassicalstatisticalmodels,wherebythereisamathematicalexpressionthatquantifiestheperformanceofamodelandguidestheoptimisationprocess.Machinelearningalgorithmsareusedtoadjustthemodel’sparameterstooptimisetheobjectivefunction.

Source:GenevaAssociation

1

IBM2024a

.

2

HermannandPuntoni2024

.

3

Ramakrishnan2025

;

GenRe2025

.

10

InNovember2022,OpenAIlaunchedChatGPT,a

conversationalAItoolthatrapidlygainedtractionforitsnaturallanguagecapabilities.Withinjusttwomonths,

itattracted100millionusers,achievingthismilestone

fasterthanTikTok(ninemonths)andInstagram(two

andahalfyears);byFebruary2025,ChatGPT’sweeklyactiveusersreached400million.4Thisunprecedentedgrowthignitedasurgeinventurecapitalinvestments

andintensifiedcompetitiontodevelopGenAIsolutionsforenhancingproductivityacrossindustries.

Inearly2025,DeepSeekemergedasamajorplayerin

theGenAIlandscape,introducingadvancedcapabilitiestoprocessandintegratemultipletypesofdata–such

asimages,sounds,andtext–simultaneously,andthe

costsandcomputingpoweraremuchlowerthanfor

earlierGenAImodels.Withinthreemonths,DeepSeekattractedover50millionusers,mirroringearlier

ChatGPTbreakthroughs.Thisinnovationreignited

investorinterestandintensifiedtheracetodevelopGenAItoolsforbroaderapplications.

Beyondtake-upbyindividualconsumers,GenAI

modelsareradicallychangingthewaybusinesses

operate.FirmsareincreasinglyleveragingGenAIfor

twopurposes:ontheproductofferingside,embeddingGenAIinproductandcustomerservicetodriveinno-vation,andontheoperationalside,GenAIredesigningtask-levelprocessesandoperationalworkflowsto

improveefficiencyandcost-effectiveness.

Businessesareincreasinglyusing

GenAItodriveinnovationandincreaseefficiency.

Figure1underscorestheaccelerationintheuseofGenAIbybusinesses.A2025globalsurveyindicatesthat71%ofrespondentshaveadoptedGenAItoolsinat

leastonebusinessfunction,risingfrom65%inearly2024and33%in2023.5

FIGURE1:AIANDGENAIUSEINBUSINESSES

OrganisationsthatuseAIinatleastonebusinessfunction,%ofrespondents*

100

80

60

40

20

0

78

72

71

56

58

50

50

65

55

47

33

20

201720182019202020212022202320242025

UseofAIUseofGenAI

*In2017,thedefinitionforAIusewasusingitinacorepartoftheorganisation?sbusinessoratscale.In2018–19,itwasembeddingatleastoneAIcapacityinbusinessprocessesorproducts.Since2020,itisthattheorganisationhasadoptedAIinatleast1function.

Source:McKinsey6

4

Hu2023

;

TechCrunch2025

.

5

McKinsey2025

.

6

Ibid

.

11

1.2Gen-AI-inducedrisks

WhileGenAIintroducesimmensebenefitsforbusi-

nesses,itscreativityandoutput-drivennatureintroducedistinctrisksthatdemandcarefulmanagement.While

someoftheserisksareamplifiedversionsofthose

fromtraditionalAI(e.g.algorithmicfairness,privacy

concerns),othersareentirelynew–particularlythoserelatedtocontentcreation,suchasalgorithmichallu-

cinations,7emergentbiases,andunauthorisedcontentreplication–andlackhistoricalparallelsinriskprofiles.8

GenAIcreatesnewriskslikethe

generationofharmfulcontentandhallucination.

RisksintroducedbyGenAIinclude,forexample,the

spreadofmisinformation(usingaudiodeepfakesto

commandsmarthomedevicesthatleadtounauthor-

isedaccess),thegenerationofharmfulcontent(with

violenceanddiscrimination),andcopyrightinfringement(usingprotectedtext,images,andmusicwithoutauthor-isationorgivingresultsthataresubstantiallysimilarin

contentandstyletoexistingworks),allofwhichposedistinctrisksforbusinessesandtheirinsurers.9

Ontheproductside,abusinessusingGenAItoolsdevelopedbytechprovidersmaysufferfinancial

harm,creatingpotentialliabilityfortheproviders.10Forexample,whenaGenAImodelintroducessecurity

vulnerabilitiesorbugsthroughitsgeneratedcode,

GenAIdevelopersfaceproductliabilityrisks.11Such

failuresinGenAIsystemscouldresemblefailuresin

criticalinfrastructure,potentiallycreatingeconomy-widesystemicrisks.AI-generatedlegalservicesmay

exposebusinessesprovidingthemtoprofessional

liabilityrisksduetoinaccurateAI-generatedcontentormisrepresentations.

Ontheoperationalside,firmsthatdeployGenAIto

steertheirbusinessesfaceriskslikeincorrect/biased

decision-making,operationalinefficiency,andfinanciallosses.

GenAIsystemsmayalsobemoresusceptibletocyber-attacks,whichcouldresultinbusinessdisruptionand

financiallosses,i.e.cybersecurityrisksstemmingfromvulnerabilitiesinGenAIsystems.

Table1showsthetypesofrisksrelatedtotraditionalandGenAI.Amongthesecategories,operational,cyberse-curity&privacy,reputational&market,andworkforce

challengesareprimarilyfirst-partyoperationalrisks,

whilebiasðicalconcerns,regulatory&compliancerisks,andESGconsiderationsalsoinvolvethird-partyproductrisk.WhilemanyrisksapplytobothtraditionalandGenAI,aspectswithspecialrelevanceforGenAIareemphasisedinthefinalcolumn.

7WhenGenAIproducesoutputsthatarefactuallyincorrect,non-sensical,orentirelydetachedfromreality,despitebeingpresentedwithhighconfidence.

8

GenRe2025

.

9

Xuetal.2024

.

10Legalliabilityforproviderstypicallyrequiresestablishingthat:1)athirdpartysufferedactualharm;2)theprovideroweda

dutyofcaretothethirdpartyandbreachedthatdutythroughnegligenceorbreachedacontractualobligation;3)thebreachwastheproximatecauseoftheharm.Importantly,manysoftwareprovidersusecontractualliabilitywaiversorlimitationsintheirtermsofservicetomitigatethisexposure.FailuresinGenAIproducts/servicescanalsocausepurelyfirst-partyopera-tionalorfinanciallossesfortheprovideritself,independentofthird-partyliability.

11Theapplicationoftraditionalproductliabilityregimestosoftware,includingAIsystems,iscomplexanduncertain.For

instance,untilrelativelyrecently,itwasunclearhowfarsoftwarecanbetreatedasaproductunderstatutessuchastheEUproductliabilitydirective.Similarly,intheUS,litigationisongoingtoestablishwhatstandardofcareattachestouseofsoftware.

12

TABLE1:AIANDGENAIRISKSFORBUSINESSES

Category

Specificrisk

TraditionalAI

GenerativeAI(Newrisksareinbold)

Operational

Algorithmicerrors;stability;reliability

Inaccuratepredictions

orunintendedoutputs

candisruptprocesses

andleadtoerrors(e.g.inventorymanagement).

GenAIoutputsmaydeviatefromintendedpurposes(offensiveorirrelevantcontent,hallucination).AsGenAIsystemsarenotvalidatedfortheirpredictivereliability,

theycausesystematicerrors,creating

heightenedriskincustomer-facingappli-cationsorautomatedcontentgeneration.Additionally,GenAIfacesheightened

servicedisruptionriskscomparedto

traditionalITsystems–itsstate-dependentworkflows(e.g.multi-turndialoguesor

contentcreation)loseprogressirreversiblyduringinterruptions.

Black-boxissuesComplexityandopacity

inAIsystemsmakeerror

tracingandaccountability

challenging,whichis

especiallyrelevantin

regulatedindustrieslike

insurance.

TraditionalAIismoreexplainablethan

GenAI.Thedecision-makingprocesses

behindGenAI’sresultsareoftendifficultor

evenimpossibletounderstand,whichmake

theprovenance,logic,andembeddedflaws

ofGenAIuntraceableandunauditableby

developers,introducingnewrisksforusers.

MaliciousattacksAIcanbeusedbythreat

attackersforinappro-priatepurposes.

GenAIcontent,suchasdeepfakesor

phishingemails,maybeexploitedfor

maliciouspurposes.ThisisdifferentfromdatapoisoningproblemswithtraditionalAI,causedbyimplantingmalicioussamples.

InadditiontoGenAIbeingusedbybad

actors,someGenAIapplicationsthem-selvesprovideabroaderattacksurface.Forexample,chatbotsthatexecute

structuredquerylanguagestatementsprovideanentrypointforattackers

throughpromptinjections.

Cybersecurity&privacy

AI-driven

cyberattacks

AIcanbeexploitedto

enhancecyberattacks,

riskingdatabreachesandoperationalsecurity.

GenAImodelsmaybemanipulatedvia

attacks(e.g.promptinjection),compro-

misingcontentqualityandsecurity(modelmanipulationrisks).

Data-privacyviolations

Collectionoflarge

amountsofdatacan

infringeonprivacylaws,leadingtolegalpenaltiesandcustomerdistrustifmishandled.

PrivacyviolationriskofGenAIishigher

thanthatoftraditionalAIasitexploresa

greatervolumeofmorecomplicatedand

unstructureddata.Theriskisparticularly

highifGenAIaccessesdataitisnot

supposedto,usesitinawayitisnot

supposedto(e.g.withoutreceivingprior

consentbytheuser),ortransfersitoutsideofthejurisdiction.GenAImayalsocauseproblemslikeprivacyintrusionthrough

constantmonitoring,heighteneddata

leakagevulnerabilities,andchallengestopersonaldatarights.

13

Category

Specificrisk

TraditionalAI

GenerativeAI(Newrisksareinbold)

Reputational&market

Customertrust&brandimage

MisuseofAIcandamagereputation,especially

ifitbreachescustomerprivacyorfairness

expectations.

Low-qualityorinaccurateGenAIoutputscanerodecustomertrustanddamage

companycredibility,asstakeholders

mayquestionthereliabilityandintentofautomatedcommunications.

Dependency&competitiverisk

Over-relianceonAIcancompromiseoperationsduringdisruptions.

GenAImayamplifytheriskasitismorecloselyandintensivelyintegratedinto

businessprocessesandmodels.

Workforce

challenges

Jobdisplacement

AIautomationmayleadtoworkforcedissatisfactionandbacklashasrolesarereplaced.

GenAIintensifiesthisrisk.AsshowninBox2,agenticAI,anadvancedversionofGenAI,willpotentiallydisplacejobsmassively.

AIskills

requirements

AIdemandsnewskills

tomanagethequality

andethicalimplicationsofoutputs,creating

challengesinworkforceupskilling.

GenAIamplifiestheproblem.Employees

mustbetrainedtointerpretGenAIoutputs,addressethicalconcerns,andensure

contentquality(‘GenAIskillrequire-ments’).GenAIalsorequirestherightbusinesscultureforadoption.

Regulatory&

compliance

EvolvingAI

regulations

Newlawsrequirebusi-

nessestoadaptquickly;non-compliancecanleadtopenalties,especially

inregulatedsectorslikeinsurance.

TheEUAIactimposescomprehensive

regulationonAIdevelopmentandusage.Regulationneedstocarefullybalance

themanagementofGenAIrisksandthepromotionoftechnologicalinnovation.

Accountability&liability

Businessesmayface

liabilityfordamage

causedbyAIsystems,

withchallengesin

assigningaccountability.

GenAImayusecopyrightedmaterial,

exposingbusinessestolegalrisksandreputationaldamage(copyrightandIP).

Biasðicalconcerns

Discrimination&bias

AIalgorithmsmay

reinforcesocietalbiases,leadingtodiscriminatorypracticesandpotential

lawsuits.

GenAIactivelycreatesnewcontent;

thus,ifusingbiaseddata,itmayproduceoutputsthatperpetuateandamplifysoci-etalstereotypes,heighteningbothethicalrisksandlitigationexposure.

Ethical

decision-making

AImayprioritiseeffi-

ciencyoverethics,

leadingtoreputational

damageifdecisionsharmcustomertrust.

GenAIoutputsmayunintentionally

violateethicalnorms,suchasgeneratingmisleadingorharmfulinformation.

ESG

Environmental&

energy

AIsystemsdemand

significantenergyand

watersupply,conflictingwithnet-zeropledges.

GenAIamplifiestheproblemasthe

underlyingtechnology,i.e.deeplearning,

demandsexponentiallygreatercomputa-

tionalpowertogeneratecomplexoutputs.Thisheightenedenergyconsumptionnot

onlystrainspowergridsbutalsointensifieswaterdependencyforcoolinghyperscaledatacentres.

Source:GenevaAssociation

14

ContentgeneratedbyGenAIsystemscomeswithacriticalelementofrandomnessandhallucinations.Thishighlightstheimportanceofmodelselection,

pre-productionevaluation,andpost-production

monitoring.Morerecently,reasoningmodels,whichgeneratenewdataratherthanjustlearningfrom

existingdata(liketraditional

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論