版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
GenAIRisksforBusinesses:Exploringtheroleforinsurance
October2025
ASSOCIATION
G\GENEVA
GenAIRisksforBusinesses:
Exploringtheroleforinsurance
Ruo(Alex)Jia
DirectorDigitalTechnologies,GenevaAssociation
AssociateProfessorofInsurance,PekingUniversity
Contributingauthors:
MartinEling
DirectoroftheInstituteofInsuranceEconomicsand
ProfessorofInsuranceManagement,UniversityofSt.Gallen
TianyangWang
ProfessorofFinance,ColoradoStateUniversity
1
GenevaAssociation
TheGenevaAssociationwascreatedin1973andistheonlyglobalassociationof
insurancecompanies;ourmembersareinsuranceandreinsuranceChiefExecutive
Officers(CEOs).Basedonrigorousresearchconductedincollaborationwithour
members,academicinstitutionsandmultilateralorganisations,ourmissionisto
identifyandinvestigatekeytrendsthatarelikelytoshapeorimpacttheinsurance
industryinthefuture,highlightingwhatisatstakefortheindustry;develop
recommendationsfortheindustryandforpolicymakers;provideaplatformtoour
membersandotherstakeholderstodiscussthesetrendsandrecommendations;
andreachouttoglobalopinionleadersandinfluentialorganisationstohighlight
thepositivecontributionsofinsurancetobetterunderstandingrisksandtobuilding
resilientandprosperouseconomiesandsocieties,andthusamoresustainableworld.
Photocredits:
Coverpage–Unsplash
GenevaAssociationpublications:
PamelaCorn,DirectorCommunications
HannahDean,Editor&ContentManager
JooinShin,DigitalContent&DesignManager
Suggestedcitation:GenevaAssociation.2025.
GenAIRisksforBusinesses:Exploringtheroleforinsurance.
Author:Ruo(Alex)Jia;Contributingauthors:MartinEling;TianyangWang.October.
?GenevaAssociation,2025Allrightsreserved
2
Contents
Acknowledgements4
Foreword5
Executivesummary6
1.Introduction8
1.1GenerativeAI:Definitionandapplications9
1.2Gen-AI-inducedrisks11
1.3Researchquestionandcontributions16
2.DemandforGen-AI-relatedinsurance:Abusinesscustomersurvey17
2.1ApplicationofGenAIinbusiness19
2.2AwarenessandperceptionofGenAIrisks21
2.3DemandforGen-AI-relatedinsurance22
3.SupplyofGen-AI-relatedinsurance26
3.1InsurabilityofGen-AI-relatedrisks27
3.2Emerginginsurancesolutions32
4.Conclusion,outlook,andrecommendations36
Appendix1:ExistingAIriskclassifications40
Appendix2:InsurabilityofGenAIrisks(extended)41
References43
3
4
ACKNOWLEDGEMENTS
ThisreportwaspreparedundertheguidanceoftheGenevaAssociation’sDigitalTechnologiesworkinggroup,sponsoredbyBiancaTetteroo,ChairoftheExecutiveBoardofAchmea.
Wearegratefultothefollowingexpertsandexecutiveswhomadethemselvesavailableforinterviewsorprovidededitorialcontributions:
?TomoAsaka(TokioMarine)
?BartBoonandRenéWissing(Achmea)
?ColonnellaEmanuele(EdgeGroup)
?SophieFarhaneandEléonoreJacquemin(AXA)
?MatthewGabriel(Manulife)
?JesusGonzalez(Aon)
?AtsushiIzu(Dai-ichiLife)
?ChristophKrieg(Peak3)
?YunlongLIU(PICC)
?PaulLloydandRobertMilanPorsch(AIAGroup)
?HugoSantaMaria(Fidelidade)
?LamiaElMarzouki(AXAXL)
?DennisNoordhoek,DarrenL.Pain,andKai-UweSchanz(GenevaAssociation)
?FrankSchmid(GenRe)
?JoanSchmit(UniversityofWisconsin-Madison)
?BillSchwegler(Transamerica)
?SimonTorrance(EmbeddedFinance&InsuranceStrategies)
?JingXIAO(PingAn)
ThereportalsobenefittedfromdiscussionsattheGenevaAssociation’s2024ProgrammeonRegulationandSupervision(PROGRES)and2024DigitalTechnologiesConference.
Finally,weextendourdeepestthankstotheGenevaAssociation’sEditorialCommitteeandAssociatesfortheirsupportandfeedback,aswellastoPieralbertoTreccani(formerlyoftheGenevaAssociation)andXinyuFAN,QinyuLI,andYunfeiYANG(PekingUniversity)fortheirvaluableresearchassistance.
Foreword
Inmomentsofprofoundtechnologicaltransformation,weoftenfaceaparadox:thetoolsthatpromisetoelevateuscanalsochallengeusinunexpectedways.GenerativeAI
demandsbothstrategicanticipationandhuman-centredstewardship.
Thisreportisourcontributiontoafast-evolvingconversationabouthowto
understand,manage,andinsureagainstthenewclassesofriskthatGenAIcreatesoramplifies.Fromcybersecuritythreatstointellectualpropertychallenges,from
workforcedisruptiontoliabilityuncertainty,arisklandscapethatgoesbeyondtraditionalcategorisationisemerging.
Togroundourinsightsinreal-worldexperience,weconductedaglobalsurveyof600businessrepresentativesinvolvedincorporateinsurancedecision-making,acrossthelargestsixinsurancemarkets.Oneclearfindingstandsout:morethan90%of
respondentsseeaneedforinsurancecoverageforGenAIrisks,withtwothirdswillingtopaymoreinpremiumsforit.Thissignalsbothurgencyandopportunity.
TheinsuranceindustryhasacriticalroletoplayinofferingprotectionandinshapingresponsibleGenAIadoption.Byapproachingthesechallengescollaboratively–withtechnologyproviders,regulators,andbusinessesalike–andwithcaution,wecan
helpensurethatthebenefitsofGenAIarerealisedsafelyandsustainably.
JadAriss
ManagingDirector
5
6
Executivesummary
AdoptionofGenAIheightensoperational,ethical,andcybersecurityrisks,spurringdemandfor
insuranceamongbusinesses.
BusinessesarerapidlyintegratingGenerativeAI(GenAI)
intobothcustomer-facingproductsandservicesand
theirinternaloperations.Thisintroducesnewriskssuchasdefectiveoutputs,biasedrecommendations,intellec-tualpropertyinfringements,andcybersecurityconcerns.TheserisksbecomeparticularlyprominentwhenGenAImodelshallucinateorreplicateprotectedcontent.
GenAIintroducesbothbenefitsandriskstobusinesses.
ThisreportexploresGen-AI-relatedrisksandassessesbusinesses’awarenessanddemandforrelated
insurance.Buildingonestablishedframeworks,we
classifyGenAIrisksintosevendomains:operational,
cybersecurity&privacy,ethical,regulatory,reputational,workforce,andESG.TheseemphasisehowGenAI
amplifiesorcreatesexposuresbeyondtraditionalriskcategories.
ToevaluateriskawarenessandinsurancedemandfrombusinessesthatuseGenAI,theGenevaAssociation
commissionedasurveyof600corporateinsurance
decision-makers/influencersacrossthesixlargest
insurancemarkets(China,France,Germany,Japan,theUK,andtheUS).ThesurveyresultsrevealwidespreadGenAIadoption,thoughperceivedusefulnessvaries
byregion–itishighestinChinaandtheUS–reflectingdifferinglevelsofdigitalmaturityandorganisational
culture.
BusinessesfacesignificantGenAIimplementation
hurdles,particularlytalentshortages,poordataquality,andinternalresistance.Theprimarychallengesvary
acrossmarkets,influencedbydifferinglevelsofwilling-nesstoadoptGenAI.
Cybersecurityrisksemergeasthetopconcernofbusi-nesses,citedbyoverhalfofsurveyedfirms,followed
bythird-partyliabilitiestoclientsandsuppliersandthenoperationaldisruption.Reputationaldamagerankslowerdespiteitspotentialforlong-termimpact.
Morethan90%ofrespondentsexpressaneedfor
insurancecoveragetailoredtoAI/GenAIthreats;over
twothirdswouldpayatleast10%moreinpremiums
forexplicitinsurancepolicyextensionsthatcover
Gen/AIrelatedrisks.Demandisparticularlystrong
amongmediumandlargeenterprises,inthetechnologyandfinancesectors,andinregionswithhigherGenAIadoption.Additionally,highGenAIriskexposureand
highseverityofpastGenAIfailuresdriveinsurancedemand,suggestingpotentialadverseselection.
Demandforinsurancethatcovers
GenAIrisksishigh,particularlyamongmediumandlargefirmsandinthe
technologyandfinancesectors.
Onthesupplyside,applyingBerliner’sinsurability
frameworkrevealsinsurabilitychallenges,atleastin
theshortterm.GenAIrisksmayleadtolargepotentiallosses.AsitisdifficultforinsurerstoverifyGenAIrisksandhowbusinessesmanagethem,Gen-AI-related
insurancemayexperienceseriousinformationasym-
metry.Insurersmaythereforebereluctanttoofferhighcoveragelimits,asintheearlydaysofcyberinsurance.
InsurersarerespondingtoGenAIrisksbyadapting
cyberandliabilitypoliciestoincludeGen-AI-related
causesofloss;parametrictriggersanddue-diligence
protocolsarebeingtestedtostreamlineunderwriting
andclaimsprocesses;andselectedstandaloneAIinsur-ancesolutionsthatintegratevarioustypesofcoverageintoasinglepolicyindicatetheemergenceofanascent
7
market,thoughitremainstooearlytosaywhether
existinginsuranceproductsornewstandalonesolutionswillcometodominatetheGenAIriskmarket.
InsurersareadaptingcyberandliabilitypoliciestoincludeGen-AI-relatedrisks,whilestandalonecoverageisalso
emerging.
TokeeppacewithGenAIinnovation,insurersshould
proactivelydefineGenAI’sriskboundariesandbegin
pilotingmodularcoverageextensions,beforeloss
eventsforcereactiveresponses.Insurersmayconsiderpartneringwithtechnologyprovidersandregulatorstoco-developriskassessmentframeworksforGenAI,
embedcontinuousmonitoringinpolicyterms,and
exploresimulation-basedmodelling.Suchcollaborationwouldharmoniseethicalstandards,clarifycoverage
terms,andstrengthentheinsuranceindustry’srole
insafeguardingandsupportingthedevelopmentandadoptionofGenAI.
1Introduction
9
Introduction
GenAIpromisestransformativegainsinproductivityandcreativity,yetitsopacityandautonomyintroduceriskswithfew
historicalparallels.
1.1GenerativeAI:Definitionandapplications
GenerativeAI(GenAI),isasubsetofartificialintelli-
gencethatcancreateoriginalcontentsuchastext,
images,voices,videos,andtheircombinationsin
responsetouserrequests.1GenAIisarevolutionary
digitaltechnologythathasthepotentialtofundamentallyreshapeproductionprocessesineconomies,much
likeearlierbreakthroughssuchasthesteamengine,electricity,andtheinternet.
GenAIisarevolutionarydigital
technologythathasthepotentialtofundamentallyreshapeproductionacrosseconomies.
GenAIbuildsonmanyofthestatisticaladvances
underpinningtraditionalAI(seeBox1).InGenAImodels–especiallylargelanguagemodels(LLMs)–thecore
taskistopredictthenexttoken(e.g.awordorphrase)inasequence,giventhecontextofallprevioustokens.Thissequentialtoken-by-tokenpredictionenables
theGenAImodeltogeneratecoherent,contextually
relevanttextorothercontentthatappearsfluidand
human-like.TraditionalAItypicallyinvolvestraditionalmachinelearningtechniquessuchasclassificationorregression,wherethemodelistrainedtomappotentialpredictorsdirectlytoafixedtargetvariable(e.g.fore-castingtomorrow’stemperature).
Box1:GenAIvs.traditionalAI
GenAIinvolvespredictingthenexttokeninasequence.Thisprocessinvolvesoptimisinganobjectivefunction,whichguidesthemodelingeneratingcoherentand
contextuallyrelevanttext.Commonobjectivefunctionsincludemaximisingthelikelihoodofthenexttokengiventheprecedingsequenceorminimisingthedifference
betweengeneratedandtargetsequences.Optimisationtechniqueslikegradientdescentareusedtofine-tunethemodel’sparameterstoachievethisobjective.The
enginebehindGenAIisdeeplearning,anadvancedtypeofmachinelearningbasedonneuralnetworks,whichcanprocessunstructureddataandextract
featuresfromdataautomatically.3
GenAIdiffersfromtraditionalAIinitsabilitytocreate
entirelynewcontentratherthanmerelyanalysingdataandmakingpredictionsbasedonpre-existingpatterns.2
TraditionalAIlearnsfromextensivedatasetstoidentifypatterns.Itsprimarystrengthliesinprocessingstruc-tureddata.TraditionalAIisclosertoclassicalstatisticalmodels,wherebythereisamathematicalexpressionthatquantifiestheperformanceofamodelandguidestheoptimisationprocess.Machinelearningalgorithmsareusedtoadjustthemodel’sparameterstooptimisetheobjectivefunction.
Source:GenevaAssociation
1
IBM2024a
.
2
HermannandPuntoni2024
.
3
Ramakrishnan2025
;
GenRe2025
.
10
InNovember2022,OpenAIlaunchedChatGPT,a
conversationalAItoolthatrapidlygainedtractionforitsnaturallanguagecapabilities.Withinjusttwomonths,
itattracted100millionusers,achievingthismilestone
fasterthanTikTok(ninemonths)andInstagram(two
andahalfyears);byFebruary2025,ChatGPT’sweeklyactiveusersreached400million.4Thisunprecedentedgrowthignitedasurgeinventurecapitalinvestments
andintensifiedcompetitiontodevelopGenAIsolutionsforenhancingproductivityacrossindustries.
Inearly2025,DeepSeekemergedasamajorplayerin
theGenAIlandscape,introducingadvancedcapabilitiestoprocessandintegratemultipletypesofdata–such
asimages,sounds,andtext–simultaneously,andthe
costsandcomputingpoweraremuchlowerthanfor
earlierGenAImodels.Withinthreemonths,DeepSeekattractedover50millionusers,mirroringearlier
ChatGPTbreakthroughs.Thisinnovationreignited
investorinterestandintensifiedtheracetodevelopGenAItoolsforbroaderapplications.
Beyondtake-upbyindividualconsumers,GenAI
modelsareradicallychangingthewaybusinesses
operate.FirmsareincreasinglyleveragingGenAIfor
twopurposes:ontheproductofferingside,embeddingGenAIinproductandcustomerservicetodriveinno-vation,andontheoperationalside,GenAIredesigningtask-levelprocessesandoperationalworkflowsto
improveefficiencyandcost-effectiveness.
Businessesareincreasinglyusing
GenAItodriveinnovationandincreaseefficiency.
Figure1underscorestheaccelerationintheuseofGenAIbybusinesses.A2025globalsurveyindicatesthat71%ofrespondentshaveadoptedGenAItoolsinat
leastonebusinessfunction,risingfrom65%inearly2024and33%in2023.5
FIGURE1:AIANDGENAIUSEINBUSINESSES
OrganisationsthatuseAIinatleastonebusinessfunction,%ofrespondents*
100
80
60
40
20
0
78
72
71
56
58
50
50
65
55
47
33
20
201720182019202020212022202320242025
UseofAIUseofGenAI
*In2017,thedefinitionforAIusewasusingitinacorepartoftheorganisation?sbusinessoratscale.In2018–19,itwasembeddingatleastoneAIcapacityinbusinessprocessesorproducts.Since2020,itisthattheorganisationhasadoptedAIinatleast1function.
Source:McKinsey6
4
Hu2023
;
TechCrunch2025
.
5
McKinsey2025
.
6
Ibid
.
11
1.2Gen-AI-inducedrisks
WhileGenAIintroducesimmensebenefitsforbusi-
nesses,itscreativityandoutput-drivennatureintroducedistinctrisksthatdemandcarefulmanagement.While
someoftheserisksareamplifiedversionsofthose
fromtraditionalAI(e.g.algorithmicfairness,privacy
concerns),othersareentirelynew–particularlythoserelatedtocontentcreation,suchasalgorithmichallu-
cinations,7emergentbiases,andunauthorisedcontentreplication–andlackhistoricalparallelsinriskprofiles.8
GenAIcreatesnewriskslikethe
generationofharmfulcontentandhallucination.
RisksintroducedbyGenAIinclude,forexample,the
spreadofmisinformation(usingaudiodeepfakesto
commandsmarthomedevicesthatleadtounauthor-
isedaccess),thegenerationofharmfulcontent(with
violenceanddiscrimination),andcopyrightinfringement(usingprotectedtext,images,andmusicwithoutauthor-isationorgivingresultsthataresubstantiallysimilarin
contentandstyletoexistingworks),allofwhichposedistinctrisksforbusinessesandtheirinsurers.9
Ontheproductside,abusinessusingGenAItoolsdevelopedbytechprovidersmaysufferfinancial
harm,creatingpotentialliabilityfortheproviders.10Forexample,whenaGenAImodelintroducessecurity
vulnerabilitiesorbugsthroughitsgeneratedcode,
GenAIdevelopersfaceproductliabilityrisks.11Such
failuresinGenAIsystemscouldresemblefailuresin
criticalinfrastructure,potentiallycreatingeconomy-widesystemicrisks.AI-generatedlegalservicesmay
exposebusinessesprovidingthemtoprofessional
liabilityrisksduetoinaccurateAI-generatedcontentormisrepresentations.
Ontheoperationalside,firmsthatdeployGenAIto
steertheirbusinessesfaceriskslikeincorrect/biased
decision-making,operationalinefficiency,andfinanciallosses.
GenAIsystemsmayalsobemoresusceptibletocyber-attacks,whichcouldresultinbusinessdisruptionand
financiallosses,i.e.cybersecurityrisksstemmingfromvulnerabilitiesinGenAIsystems.
Table1showsthetypesofrisksrelatedtotraditionalandGenAI.Amongthesecategories,operational,cyberse-curity&privacy,reputational&market,andworkforce
challengesareprimarilyfirst-partyoperationalrisks,
whilebiasðicalconcerns,regulatory&compliancerisks,andESGconsiderationsalsoinvolvethird-partyproductrisk.WhilemanyrisksapplytobothtraditionalandGenAI,aspectswithspecialrelevanceforGenAIareemphasisedinthefinalcolumn.
7WhenGenAIproducesoutputsthatarefactuallyincorrect,non-sensical,orentirelydetachedfromreality,despitebeingpresentedwithhighconfidence.
8
GenRe2025
.
9
Xuetal.2024
.
10Legalliabilityforproviderstypicallyrequiresestablishingthat:1)athirdpartysufferedactualharm;2)theprovideroweda
dutyofcaretothethirdpartyandbreachedthatdutythroughnegligenceorbreachedacontractualobligation;3)thebreachwastheproximatecauseoftheharm.Importantly,manysoftwareprovidersusecontractualliabilitywaiversorlimitationsintheirtermsofservicetomitigatethisexposure.FailuresinGenAIproducts/servicescanalsocausepurelyfirst-partyopera-tionalorfinanciallossesfortheprovideritself,independentofthird-partyliability.
11Theapplicationoftraditionalproductliabilityregimestosoftware,includingAIsystems,iscomplexanduncertain.For
instance,untilrelativelyrecently,itwasunclearhowfarsoftwarecanbetreatedasaproductunderstatutessuchastheEUproductliabilitydirective.Similarly,intheUS,litigationisongoingtoestablishwhatstandardofcareattachestouseofsoftware.
12
TABLE1:AIANDGENAIRISKSFORBUSINESSES
Category
Specificrisk
TraditionalAI
GenerativeAI(Newrisksareinbold)
Operational
Algorithmicerrors;stability;reliability
Inaccuratepredictions
orunintendedoutputs
candisruptprocesses
andleadtoerrors(e.g.inventorymanagement).
GenAIoutputsmaydeviatefromintendedpurposes(offensiveorirrelevantcontent,hallucination).AsGenAIsystemsarenotvalidatedfortheirpredictivereliability,
theycausesystematicerrors,creating
heightenedriskincustomer-facingappli-cationsorautomatedcontentgeneration.Additionally,GenAIfacesheightened
servicedisruptionriskscomparedto
traditionalITsystems–itsstate-dependentworkflows(e.g.multi-turndialoguesor
contentcreation)loseprogressirreversiblyduringinterruptions.
Black-boxissuesComplexityandopacity
inAIsystemsmakeerror
tracingandaccountability
challenging,whichis
especiallyrelevantin
regulatedindustrieslike
insurance.
TraditionalAIismoreexplainablethan
GenAI.Thedecision-makingprocesses
behindGenAI’sresultsareoftendifficultor
evenimpossibletounderstand,whichmake
theprovenance,logic,andembeddedflaws
ofGenAIuntraceableandunauditableby
developers,introducingnewrisksforusers.
MaliciousattacksAIcanbeusedbythreat
attackersforinappro-priatepurposes.
GenAIcontent,suchasdeepfakesor
phishingemails,maybeexploitedfor
maliciouspurposes.ThisisdifferentfromdatapoisoningproblemswithtraditionalAI,causedbyimplantingmalicioussamples.
InadditiontoGenAIbeingusedbybad
actors,someGenAIapplicationsthem-selvesprovideabroaderattacksurface.Forexample,chatbotsthatexecute
structuredquerylanguagestatementsprovideanentrypointforattackers
throughpromptinjections.
Cybersecurity&privacy
AI-driven
cyberattacks
AIcanbeexploitedto
enhancecyberattacks,
riskingdatabreachesandoperationalsecurity.
GenAImodelsmaybemanipulatedvia
attacks(e.g.promptinjection),compro-
misingcontentqualityandsecurity(modelmanipulationrisks).
Data-privacyviolations
Collectionoflarge
amountsofdatacan
infringeonprivacylaws,leadingtolegalpenaltiesandcustomerdistrustifmishandled.
PrivacyviolationriskofGenAIishigher
thanthatoftraditionalAIasitexploresa
greatervolumeofmorecomplicatedand
unstructureddata.Theriskisparticularly
highifGenAIaccessesdataitisnot
supposedto,usesitinawayitisnot
supposedto(e.g.withoutreceivingprior
consentbytheuser),ortransfersitoutsideofthejurisdiction.GenAImayalsocauseproblemslikeprivacyintrusionthrough
constantmonitoring,heighteneddata
leakagevulnerabilities,andchallengestopersonaldatarights.
13
Category
Specificrisk
TraditionalAI
GenerativeAI(Newrisksareinbold)
Reputational&market
Customertrust&brandimage
MisuseofAIcandamagereputation,especially
ifitbreachescustomerprivacyorfairness
expectations.
Low-qualityorinaccurateGenAIoutputscanerodecustomertrustanddamage
companycredibility,asstakeholders
mayquestionthereliabilityandintentofautomatedcommunications.
Dependency&competitiverisk
Over-relianceonAIcancompromiseoperationsduringdisruptions.
GenAImayamplifytheriskasitismorecloselyandintensivelyintegratedinto
businessprocessesandmodels.
Workforce
challenges
Jobdisplacement
AIautomationmayleadtoworkforcedissatisfactionandbacklashasrolesarereplaced.
GenAIintensifiesthisrisk.AsshowninBox2,agenticAI,anadvancedversionofGenAI,willpotentiallydisplacejobsmassively.
AIskills
requirements
AIdemandsnewskills
tomanagethequality
andethicalimplicationsofoutputs,creating
challengesinworkforceupskilling.
GenAIamplifiestheproblem.Employees
mustbetrainedtointerpretGenAIoutputs,addressethicalconcerns,andensure
contentquality(‘GenAIskillrequire-ments’).GenAIalsorequirestherightbusinesscultureforadoption.
Regulatory&
compliance
EvolvingAI
regulations
Newlawsrequirebusi-
nessestoadaptquickly;non-compliancecanleadtopenalties,especially
inregulatedsectorslikeinsurance.
TheEUAIactimposescomprehensive
regulationonAIdevelopmentandusage.Regulationneedstocarefullybalance
themanagementofGenAIrisksandthepromotionoftechnologicalinnovation.
Accountability&liability
Businessesmayface
liabilityfordamage
causedbyAIsystems,
withchallengesin
assigningaccountability.
GenAImayusecopyrightedmaterial,
exposingbusinessestolegalrisksandreputationaldamage(copyrightandIP).
Biasðicalconcerns
Discrimination&bias
AIalgorithmsmay
reinforcesocietalbiases,leadingtodiscriminatorypracticesandpotential
lawsuits.
GenAIactivelycreatesnewcontent;
thus,ifusingbiaseddata,itmayproduceoutputsthatperpetuateandamplifysoci-etalstereotypes,heighteningbothethicalrisksandlitigationexposure.
Ethical
decision-making
AImayprioritiseeffi-
ciencyoverethics,
leadingtoreputational
damageifdecisionsharmcustomertrust.
GenAIoutputsmayunintentionally
violateethicalnorms,suchasgeneratingmisleadingorharmfulinformation.
ESG
Environmental&
energy
AIsystemsdemand
significantenergyand
watersupply,conflictingwithnet-zeropledges.
GenAIamplifiestheproblemasthe
underlyingtechnology,i.e.deeplearning,
demandsexponentiallygreatercomputa-
tionalpowertogeneratecomplexoutputs.Thisheightenedenergyconsumptionnot
onlystrainspowergridsbutalsointensifieswaterdependencyforcoolinghyperscaledatacentres.
Source:GenevaAssociation
14
ContentgeneratedbyGenAIsystemscomeswithacriticalelementofrandomnessandhallucinations.Thishighlightstheimportanceofmodelselection,
pre-productionevaluation,andpost-production
monitoring.Morerecently,reasoningmodels,whichgeneratenewdataratherthanjustlearningfrom
existingdata(liketraditional
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企事業(yè)單位環(huán)境保護管理手冊
- 2025年企業(yè)并購重組與整合指南
- 超市員工培訓及考核標準制度
- 超市商品銷售及價格調(diào)整制度
- 2026年武漢市第三十二中學招聘初中教師備考題庫及1套參考答案詳解
- 2026年深圳市第二人民醫(yī)院健康管理中心招聘備考題庫及1套完整答案詳解
- 養(yǎng)老院工作人員服務禮儀規(guī)范制度
- 2026年永昌縣中醫(yī)院招聘備考題庫及參考答案詳解
- 中國國際貨運航空股份有限公司西南大區(qū)2026屆高校畢業(yè)生招聘備考題庫及答案詳解參考
- 2026年茂名市電白區(qū)馬踏鎮(zhèn)衛(wèi)生院公開招聘編外人員備考題庫及一套參考答案詳解
- 輸電線路基礎知識輸電線路組成與型式
- 南昌工程學院施工組織設計
- GA 1808-2022軍工單位反恐怖防范要求
- 《中國特色社會主義》期末試卷
- 某煤礦防治水分區(qū)管理論證報告
- 雙室平衡容器說明書
- RB/T 218-2017檢驗檢測機構(gòu)資質(zhì)認定能力評價機動車檢驗機構(gòu)要求
- GB/T 24128-2009塑料防霉性能試驗方法
- GB/T 14689-2008技術(shù)制圖圖紙幅面和格式
- GB 4053.2-2009固定式鋼梯及平臺安全要求第2部分:鋼斜梯
- 土地買賣合同協(xié)議書模板
評論
0/150
提交評論