江蘇省蘇州市張家港市梁豐高級中學2026屆數(shù)學九上期末監(jiān)測模擬試題含解析_第1頁
江蘇省蘇州市張家港市梁豐高級中學2026屆數(shù)學九上期末監(jiān)測模擬試題含解析_第2頁
江蘇省蘇州市張家港市梁豐高級中學2026屆數(shù)學九上期末監(jiān)測模擬試題含解析_第3頁
江蘇省蘇州市張家港市梁豐高級中學2026屆數(shù)學九上期末監(jiān)測模擬試題含解析_第4頁
江蘇省蘇州市張家港市梁豐高級中學2026屆數(shù)學九上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州市張家港市梁豐高級中學2026屆數(shù)學九上期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.函數(shù)y=ax2﹣1與y=ax(a≠0)在同一直角坐標系中的圖象可能是()A. B. C. D.2.把拋物線y=ax2+bx+c的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為y=x2-2x+3,則b+c的值為()A.9 B.12 C.-14 D.103.如圖,在△ABC中,∠B=80°,∠C=40°,直線l平行于BC.現(xiàn)將直線l繞點A逆時針旋轉,所得直線分別交邊AB和AC于點M、N,若△AMN與△ABC相似,則旋轉角為()A.20° B.40° C.60° D.80°4.平面直角坐標系內一點關于原點對稱點的坐標是()A. B. C. D.5.某微生物的直徑為0.000005035m,用科學記數(shù)法表示該數(shù)為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣56.如圖,在平面直角坐標系中,的頂點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉,點的對應點的坐標是()A. B. C. D.7.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.28.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是()A.2 B.2.5 C.3 D.49.如圖,在△ABC中,點D,E分別在AB,AC邊上,且DE∥BC,若AD:DB=3:2,AE=6,則EC等于()A.10 B.4 C.15 D.910.以半徑為1的圓的內接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,矩形中,,點是邊上一點,交于點,則長的取值范圍是____.12.如圖,某艦艇上午9時在A處測得燈塔C在其南偏東75°方向上,且該艦艇以每小時10海里的速度沿南偏東15°方向航行,11小時到達B處,在B處測得燈塔C在北偏東75°方向上,則B處到燈塔C的距離為________海里.13.正的邊長為,邊長為的正的頂點與點重合,點分別在,上,將沿邊順時針連續(xù)翻轉(如圖所示),直至點第一次回到原來的位置,則點運動路徑的長為(結果保留)14.如圖,拋物線與直線的兩個交點坐標分別為,則關于x的方程的解為________.15.如圖,拋物線y=ax2與直線y=bx+c的兩個交點坐標分別為A(﹣2,4),B(1,1),則不等式ax2<bx+c的解集是______.16.如圖,矩形ABOC的頂點B、C分別在x軸、y軸上,頂點A在第一象限,點B的坐標為(,0),將線段OC繞點O順時針旋轉60°至線段OD,若反比例函數(shù)(k≠0)的圖象進過A、D兩點,則k值為_____.17.如圖,已知點D,E是半圓O上的三等分點,C是弧DE上的一個動點,連結AC和BC,點I是△ABC的內心,若⊙O的半徑為3,當點C從點D運動到點E時,點I隨之運動形成的路徑長是_____.18.菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=_____cm.三、解答題(共66分)19.(10分)己知:如圖,拋物線與坐標軸分別交于點,點是線段上方拋物線上的一個動點,(1)求拋物線解析式:(2)當點運動到什么位置時,的面積最大?20.(6分)已知二次函數(shù)的圖像是經過、兩點的一條拋物線.(1)求這個函數(shù)的表達式,并在方格紙中畫出它的大致圖像;(2)點為拋物線上一點,若的面積為,求出此時點的坐標.21.(6分)如圖,C城市在A城市正東方向,現(xiàn)計劃在A、C兩城市間修建一條高速鐵路(即線段AC),經測量,森林保護區(qū)的中心P在城市A的北偏東60°方向上,在線段AC上距A城市150km的B處測得P在北偏東30°方向上,已知森林保護區(qū)是以點P為圓心,120km為半徑的圓形區(qū)域,請問計劃修建的這條高速鐵路是否穿越保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)22.(8分)為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調查,并將所得數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:(1)本次抽樣調查學生的人數(shù)為.(2)補全兩個統(tǒng)計圖,并求出扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù).(3)若該校共有840名學生,請根據(jù)抽樣調查結果估計獲得三等獎的人數(shù).23.(8分)如圖1,拋物線與x軸相交于點A、點B,與y軸交于點C(0,3),對稱軸為直線x=1,交x軸于點D,頂點為點E.(1)求該拋物線的解析式;(2)連接AC,CE,AE,求△ACE的面積;(3)如圖2,點F在y軸上,且OF=,點N是拋物線在第一象限內一動點,且在拋物線對稱軸右側,連接ON交對稱軸于點G,連接GF,若GF平分∠OGE,求點N的坐標.24.(8分)把一根長為米的鐵絲折成一個矩形,矩形的一邊長為米,面積為S米,(1)求S關于的函數(shù)表達式和的取值范圍(2)為何值時,S最大?最大為多少?25.(10分)汛期到來,山洪暴發(fā).下表記錄了某水庫內水位的變化情況,其中表示時間(單位:),表示水位高度(單位:),當時,達到警戒水位,開始開閘放水.02468101214161820141516171814.41210.3987.2(1)在給出的平面直角坐標系中,根據(jù)表格中的數(shù)據(jù)描出相應的點.(2)請分別求出開閘放水前和放水后最符合表中數(shù)據(jù)的函數(shù)解析式.(3)據(jù)估計,開閘放水后,水位的這種變化規(guī)律還會持續(xù)一段時間,預測何時水位達到.26.(10分)某校為了解每天的用電情況,抽查了該校某月10天的用電量,統(tǒng)計如下(單位:度):用電量9093102113114120天數(shù)112312(1)該校這10天用電量的眾數(shù)是度,中位數(shù)是度;(2)估計該校這個月的用電量(用30天計算).

參考答案一、選擇題(每小題3分,共30分)1、B【分析】本題可先通過拋物線與y軸的交點排除C、D,然后根據(jù)一次函數(shù)y=ax圖象得到a的正負,再與二次函數(shù)y=ax2的圖象相比較看是否一致.【詳解】解:由函數(shù)y=ax2﹣1可知拋物線與y軸交于點(0,﹣1),故C、D錯誤;A、由拋物線可知,a>0,由直線可知,a<0,故A錯誤;B、由拋物線可知,a>0,由直線可知,a>0,故B正確;故選:B.此題考查的是一次函數(shù)的圖象及性質和二次函數(shù)的圖象及性質,掌握一次函數(shù)的圖象及性質與系數(shù)關系和二次函數(shù)的圖象及性質與系數(shù)關系是解決此題的關鍵.2、B【解析】y=x2-2x+3=(x-1)2+2,將其向上平移2個單位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3個單位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故選B.3、B【解析】因為旋轉后得到△AMN與△ABC相似,則∠AMN=∠C=40°,因為旋轉前∠AMN=80°,所以旋轉角度為40°,故選B.4、D【分析】根據(jù)“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數(shù)”解答.【詳解】解:根據(jù)關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.5、A【解析】試題分析:0.000005035m,用科學記數(shù)法表示該數(shù)為5.035×10﹣6,故選A.考點:科學記數(shù)法—表示較小的數(shù).6、D【分析】過點作x軸的垂線,垂足為M,通過條件求出,MO的長即可得到的坐標.【詳解】解:過點作x軸的垂線,垂足為M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐標為.故選:D.本題考查坐標與圖形變化-旋轉,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.7、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.本題主要考查圓周角定理的推論及相似三角形的判定及性質,掌握圓周角定理的推論及相似三角形的性質是解題的關鍵.8、B【解析】取EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,設OF=x,則OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】如圖:EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴四邊形CDMN是矩形,∴MN=CD=4,設OF=x,則ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故選B.本題主考查垂徑定理及勾股定理的知識,正確作出輔助線構造直角三角形是解題的關鍵.9、B【解析】根據(jù)平行線分線段成比例定理列出比例式,計算即可.【詳解】解:∵DE∥BC,∴AEEC=ADDB解得,EC=4,故選:B.考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.10、D【解析】由于內接正三角形、正方形、正六邊形是特殊內角的多邊形,可構造直角三角形分別求出邊心距的長,由勾股定理逆定理可得該三角形是直角三角形,進而可得其面積.【詳解】如圖1,∵OC=1,∴OD=1×sin30°=;如圖2,∵OB=1,∴OE=1×sin45°=;如圖3,∵OA=1,∴OD=1×cos30°=,則該三角形的三邊分別為:、、,∵()2+()2=()2,∴該三角形是以、為直角邊,為斜邊的直角三角形,∴該三角形的面積是,故選:D.考查正多邊形的外接圓的問題,應用邊心距,半徑和半弦長構成直角三角形,來求相關長度是解題關鍵。二、填空題(每小題3分,共24分)11、【分析】證明,利用相似比列出關于AD,DE,EC,CF的關系式,從而求出長的取值范圍.【詳解】∵∴∴∵四邊形是矩形∴∴∴∴∴∴因為∴故答案為:.本題考查了一元二次方程的最值問題,掌握相似三角形的性質以及判定、解一元二次方程得方法是解題的關鍵.12、20【分析】根據(jù)題意得出,,據(jù)此即可求解.【詳解】根據(jù)題意:(海里),如圖,根據(jù)題意:,,∴,,∴,∴,答:B處到燈塔C的距離為海里.故答案為:.本題考查了解直角三角形的應用-方向角問題,結合航海中的實際問題,將解直角三角形的相關知識有機結合,體現(xiàn)了數(shù)學應用于實際生活的思想.13、【解析】從圖中可以看出翻轉的第一次是一個120度的圓心角,半徑是1,所以弧長=,第二次是以點P為圓心,所以沒有路程,在BC邊上,第一次第二次同樣沒有路程,AC邊上也是如此,點P運動路徑的長為14、【詳解】∵拋物線與直線的兩個交點坐標分別為,∴方程組的解為,,即關于x的方程的解為.15、﹣2<x<1【分析】直接利用函數(shù)圖象結合其交點坐標得出不等式ax2<bx+c的解集即可;【詳解】解:如圖所示:∵拋物線y=ax2與直線y=bx+c的兩個交點坐標分別為A(﹣2,4),B(1,1),∴不等式ax2<bx+c的解集,即一次函數(shù)在二次函數(shù)圖象上方時,得出x的取值范圍為:﹣2<x<1.故答案為:﹣2<x<1.本題主要考查了二次函數(shù)與不等式(組),掌握二次函數(shù)的性質和不等式的解是解題的關鍵.16、4【分析】過點D作DH⊥x軸于H,四邊形ABOC是矩形,由性質有AB=CO,∠COB=90°,將OC繞點O順時針旋轉60°,OC=OD,∠COD=60°,可得∠DOH=30°,設DH=x,點D(x,x),點A(,2x),反比例函數(shù)(k≠0)的圖象經過A、D兩點,構造方程求出即可.【詳解】解:如圖,過點D作DH⊥x軸于H,∵四邊形ABOC是矩形,∴AB=CO,∠COB=90°,∵將線段OC繞點O順時針旋轉60°至線段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH=DH,設DH=x,∴點D(x,x),點A(,2x),∵反比例函數(shù)(k≠0)的圖象經過A、D兩點,∴x×x=×2x,∴x=2,∴點D(2,2),∴k=2×2=4,故答案為:4.本題考查反比例函數(shù)解析式問題,關鍵利用矩形的性質與旋轉找到AB=CO=OD,∠DOH=30°,DH=x,會用x表示點D(x,x),點A(,2x),利用A、D在反比例函數(shù)(k≠0)的圖象上,構造方程使問題得以解決.17、π.【分析】連接AI,BI,作OT⊥AB交⊙O于T,連接AT,TB,以T為圓心,TA為半徑作⊙T,在優(yōu)弧AB上取一點G,連接AG,BG.證明∠AIB+∠G=180°,推出A,I,B,G四點共圓,【詳解】如圖,連接AI,BI,作OT⊥AB交⊙O于T,連接AT,TB,以T為圓心,TA為半徑作⊙T,在優(yōu)弧AB上取一點G,連接AG,BG.推出點I的運動軌跡是即可解決問題.∵AB是直徑,∴∠ACB=90°,∵I是△ABC的內心,∴∠AIB=135°,∵OT⊥AB,OA=OB,∴TA=TB,∠ATB=90°,∴∠AGB=∠ATB=45°,∴∠AIB+∠G=180°,∴A,I,B,G四點共圓,∴點I的運動軌跡是,由題意,∴∠MTM=30°,易知TA=TM=3,∴點I隨之運動形成的路徑長是,故答案為.本題考查了軌跡,垂徑定理、圓周角定理、三角形的內心和等邊三角形的性質等知識,解題的關鍵是正確尋找點的運動軌跡.18、1【分析】先根據(jù)周長求出菱形的邊長,再根據(jù)菱形的對角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【詳解】解:如圖,∵菱形ABCD的周長是20cm,對角線AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案為:1.本題考查了菱形的性質,屬于簡單題,熟悉菱形對角線互相垂直且平分是解題關鍵.三、解答題(共66分)19、(1);(2)點運動到坐標為,面積最大.【分析】(1)用待定系數(shù)法即可求拋物線解析式.

(2)設點P橫坐標為t,過點P作PF∥y軸交AB于點F,求直線AB解析式,即能用t表示點F坐標,進而表示PF的長.把△PAB分成△PAF與△PBF求面積和,即得到△PAB面積與t的函數(shù)關系,配方即得到t為何值時,△PAB面積最大,進而求得此時點P坐標.【詳解】解:(1)拋物線過點,,解這個方程組,得,拋物線解析式為.(2)如圖1,過點作軸于點,交于點.時,,.直線解析式為.點在線段上方拋物線上,設...=點運動到坐標為,面積最大.本題考查了二次函數(shù)的圖象與性質,利用二次函數(shù)求三角形面積的最大值,關鍵在于把原三角形分割成有一邊平行于y軸的兩個三角形面積之和.20、(1),圖畫見解析;(2)或.【分析】(1)利用交點式直接寫出函數(shù)的表達式,再用五點法作出函數(shù)的圖象;(2)先求得AB的長,再利用三角形面積法求得點P的縱坐標,即可求得答案.【詳解】(1)由題意知:..∵頂點坐標為:-1012303430描點、連線作圖如下:(2)設點P的縱坐標為,,∴.∴或,將代入,得:,此時方程無解.將代入,得:,解得:;或.本題主要考查了待定系數(shù)法求函數(shù)的解析式以及利用三角形面積法求點的坐標的應用,求函數(shù)圖象上的點的坐標的問題一般要轉化為求線段的長的問題.21、計劃修建的這條高速鐵路穿越保護區(qū),理由見解析【分析】作PH⊥AC于H,根據(jù)等腰三角形的判定定理得到PB=AB=150,根據(jù)正弦的定義求出PH,比較大小得到答案.【詳解】計劃修建的這條高速鐵路穿越保護區(qū),理由如下:作PH⊥AC于H,由題意得,∠PBH=60°,∠PAH=30°,∴∠APB=30°,∴∠BAP=∠BPA,∴PB=AB=150,在Rt△PBH中,sin∠PBH=,∴PH=PB?sin∠PBH=75≈129.9,129.9>120,∴計劃修建的這條高速鐵路穿越保護區(qū).本題考查了解直角三角形的應用,正確添加輔助線構建直角三角形是解題的關鍵.22、(1)40;(2)見解析,18°;(3)獲得三等獎的有210人.【分析】(1)根據(jù)B的人數(shù)和所占的百分比可以求得本次抽樣調查學生人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)和(1)中的結果可以將統(tǒng)計圖中所缺的數(shù)據(jù)補充完整并計算出扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出獲得三等獎的人數(shù).【詳解】解:(1)本次抽樣調查學生的人數(shù)為:8÷20%=40,故答案為:40;(2)A所占的百分比為:×100%=5%,D所占的百分比為:×100%=50%,C所占的百分比為:1﹣5%﹣20%﹣50%=25%,獲得三等獎的人數(shù)為:40×25%=10,補全的統(tǒng)計圖如圖所示,扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù)是360°×5%=18°;(3)840×25%=210(人),答:獲得三等獎的有210人.本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.23、(1)y=-x2+2x+3;(2)1;(3)點N的坐標為:(,).【分析】(1)由點C的坐標,求出c,再由對稱軸為x=1,求出b,即可得出結論;(2)先求出點A,E坐標,進而求出直線AE與y軸的交點坐標,最后用三角形面積公式計算即可得出結論;(3)先利用角平分線定理求出FQ=1,進而利用勾股定理求出OQ=1=FQ,進而求出∠BON=45°,求出直線ON的解析式,最后聯(lián)立拋物線解析式求解,即可得出結論.【詳解】解:(1)∵拋物線y=-x2+bx+c與y軸交于點C(0,3),令x=0,則c=3,∵對稱軸為直線x=1,∴,∴b=2,∴拋物線的解析式為y=-x2+2x+3;(2)如圖1,AE與y軸的交點記作H,由(1)知,拋物線的解析式為y=-x2+2x+3,令y=0,則-x2+2x+3=0,∴x=-1或x=3,∴A(-1,0),當x=1時,y=-1+2+3=4,∴E(1,4),∴直線AE的解析式為y=2x+2,∴H(0,2),∴CH=3-2=1,∴S△ACE=CH?|xE-xA|=×1×2=1;(3)如圖2,過點F作FP⊥DE于P,則FP=1,過點F作FQ⊥ON于Q,∵GF平分∠OGE,∴FQ=FP=1,在Rt△FQO中,OF=,根據(jù)勾股定理得,OQ=,∴OQ=FQ,∴∠FOQ=45°,∴∠BON=90°-45°=45°,過點Q作QM⊥OB于M,OM=QM∴ON的解析式為y=x①,∵點N在拋物線y=-x2+2x+3②上,聯(lián)立①②,則,解得:或(由于點N在對稱軸x=1右側,所以舍去),∴點N的坐標為:(,).此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形面積的求法,角平分線定理,勾股定理,直線與拋物線的交點坐標的求法,求出直線ON的解析式是解本題的關鍵.24、(1)S=-+2x(0<x<2);(2)x=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論