版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆撫州市重點中學九年級數學第一學期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列圖形中,是相似形的是()A.所有平行四邊形 B.所有矩形 C.所有菱形 D.所有正方形2.在相同時刻,物高與影長成正比.如果高為1.5米的標桿影長為2.5米,那么此時高為18米的旗桿的影長為()A.20米 B.30米 C.16米 D.15米3.已知⊙O的半徑為4,圓心O到弦AB的距離為2,則弦AB所對的圓周角的度數是()A.30° B.60°C.30°或150° D.60°或120°4.方程的根是()A.x=4 B.x=0 C. D.5.如圖,在菱形ABCD中,對角線AC、BD相交于點O,BD=8,tan∠ABD=,則線段AB的長為()A. B.2 C.5 D.106.下列事件是必然事件的是()A.打開電視機,正在播放籃球比賽 B.守株待兔C.明天是晴天 D.在只裝有5個紅球的袋中摸出1球,是紅球.7.用配方法解一元二次方程時,下列變形正確的是().A. B. C. D.8.已知反比例函數,下列結論中不正確的是()A.圖象必經過點 B.隨的增大而增大C.圖象在第二,四象限內 D.若,則9.如圖,以原點O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是上一點(不與A,B重合),連接OP,設∠POB=α,則點P的坐標是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)10.“拋一枚均勻硬幣,落地后正面朝上”這一事件是()A.必然事件 B.隨機事件 C.確定事件 D.不可能事件11.把拋物線y=ax2+bx+c的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為y=x2-2x+3,則b+c的值為()A.9 B.12 C.-14 D.1012.如圖,AB為⊙O的弦,半徑OC交AB于點D,AD=DB,OC=5,OD=3,則AB的長為()A.8 B.6 C.4 D.3二、填空題(每題4分,共24分)13.為估計全市九年級學生早讀時間情況,從某私立學校隨機抽取100人進行調查,在這個問題中,調查的樣本________(填“具有”或“不具有”)代表性.14.某服裝店搞促銷活動,將一種原價為56元的襯衣第一次降價后,銷售量仍然不好,又進行第二次降價,兩次降價的百分率相同,現(xiàn)售價為31.5元,設降價的百分率為x,則列出方程是______________.15.如圖,點P是∠AOB平分線OC上一點,PD⊥OB,垂足為D,若PD=2,則點P到邊OA的距離是_____.16.如圖,每個小正方形的邊長都為1,點A、B、C都在小正方形的頂點上,則∠ABC的正切值為_____.17.如圖,正三角形AFG與正五邊形ABCDE內接于⊙O,若⊙O的半徑為3,則的長為______________.18.如圖是二次函數y=ax2+bx+c的部分圖象,由圖象可知方程ax2+bx+c=0的解是_________.三、解答題(共78分)19.(8分)如圖,的頂點坐標分別為,,.(1)畫出關于點的中心對稱圖形;(2)畫出繞點逆時針旋轉的;直接寫出點的坐標為_____;(3)求在旋轉到的過程中,點所經過的路徑長.20.(8分)某校以“我最喜愛的體育運動”為主題對全校學生進行隨機抽樣調查,調查的運動項目有:籃球、羽毛球、乒乓球、跳繩及其它項目(每位同學僅選一項).根據調查結果繪制了如下不完整的頻數分布表和扇形統(tǒng)計圖:請根據以上圖表信息解答下列問題:(1)頻數分布表中的m=________,n=________;(2)在扇形統(tǒng)計圖中,“乒乓球”所在的扇形的圓心角的度數為________°;(3)從選擇“籃球”選項的60名學生中,隨機抽取10名學生作為代表進行投籃測試,則其中某位學生被選中的概率是________.21.(8分)為了創(chuàng)建文明城市,增強學生的環(huán)保意識.隨機抽取8名學生,對他們的垃圾分類投放情況進行調查,這8名學生分別標記為,其中“√”表示投放正確,“×”表示投放錯誤,統(tǒng)計情況如下表.學生垃圾類別廚余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名學生中至少有三類垃圾投放正確的概率;(2)為進一步了解垃圾分類投放情況,現(xiàn)從8名學生里“有害垃圾”投放錯誤的學生中隨機抽取兩人接受采訪,試用標記的字母列舉所有可能抽取的結果.22.(10分)在平面直角坐標系中,拋物線經過點,.(1)求這條拋物線所對應的函數表達式.(2)求隨的增大而減小時的取值范圍.23.(10分)如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續(xù)航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數據:≈1.41,≈1.73,≈2.45)24.(10分)如圖,在平面直角坐標系中,的三個頂點的坐標分別為點、、.(1)的外接圓圓心的坐標為.(2)①以點為位似中心,在網格區(qū)域內畫出,使得與位似,且點與點對應,位似比為2:1,②點坐標為.(3)的面積為個平方單位.25.(12分)已知在平面直角坐標系中,拋物線與x軸相交于點A,B,與y軸相交于點C,直線y=x+4經過A,C兩點,(1)求拋物線的表達式;(2)如果點P,Q在拋物線上(P點在對稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標;(3)動點M在直線y=x+4上,且△ABC與△COM相似,求點M的坐標.26.在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機取出一個小球,記下數字為x,小紅在剩下的3個小球中隨機取出一個小球,記下數字為y。(1)計算由x、y確定的點(x,y)在函數y=-x+5的圖象上的概率;(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個游戲公平嗎?說明理由.若不公平,請寫出公平的游戲規(guī)則.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據對應角相等,對應邊成比例的兩個多邊形相似,依次分析各項即可判斷.【詳解】所有的平行四邊形、矩形、菱形均不一定是相似多邊形,而所有的正方形都是相似多邊形,故選D.本題是判定多邊形相似的基礎應用題,難度一般,學生只需熟練掌握特殊四邊形的性質即可輕松完成.2、B【分析】設此時高為18米的旗桿的影長為xm,利用“在同一時刻物高與影長的比相等”列出比例式,進而即可求解.【詳解】設此時高為18米的旗桿的影長為xm,根據題意得:=,解得:x=30,∴此時高為18米的旗桿的影長為30m.故選:B.本題考查了相似三角形的應用,掌握相似三角形的性質和“在同一時刻物高與影長的比相等”的原理,是解題的關鍵.3、D【分析】根據題意作出圖形,利用三角形內角和以及根據圓周角定理和圓內接四邊形的性質進行分析求解.【詳解】解:如圖,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圓內接四邊形的性質),即弦AB所對的圓周角的度數是60°或120°.故選:D.本題考查圓周角定理,圓周角定理即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、C【分析】利用因式分解法求解即可.【詳解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故選C.本題考查了一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解答本題的關鍵.5、C【解析】分析:根據菱形的性質得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根據勾股定理求出AB即可.詳解:∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故選C.點睛:本題考查了菱形的性質、勾股定理和解直角三角形,能熟記菱形的性質是解此題的關鍵.6、D【分析】根據必然事件、不可能事件、隨機事件的概念進行解答即可.【詳解】解:打開電視機,正在播放籃球比賽是隨機事件,不符合題意;守株待兔是隨機事件,不符合題意;明天是晴天是隨機事件,不符合題意在只裝有5個紅球的袋中摸出1球,是紅球是必然事件,D符合題意.故選:D.本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、D【分析】根據配方法的原理,湊成完全平方式即可.【詳解】解:,,,故選D.本題主要考查配方法的掌握,關鍵在于一次項的系數等于2倍的二次項系數和常數項的乘積.8、B【分析】根據反比例函數圖象上點的坐標特點:橫縱坐標之積=k,可以判斷出A的正誤;根據反比例函數的性質:k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大可判斷出B、C、D的正誤.【詳解】A、反比例函數,所過的點的橫縱坐標之積=?6,此結論正確,故此選項不符合題意;B、反比例函數,在每一象限內y隨x的增大而增大,此結論不正確,故此選項符合題意;C、反比例函數,圖象在第二、四象限內,此結論正確,故此選項不合題意;D、反比例函數,當x>1時圖象在第四象限,y隨x的增大而增大,故x>1時,?6<y<0;故選:B.此題主要考查了反比例函數的性質,以及反比例函數圖象上點的坐標特點,關鍵是熟練掌握反比例函數的性質:(1)反比例函數y=(k≠0)的圖象是雙曲線;(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減?。唬?)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.9、C【解析】過P作PQ⊥OB,交OB于點Q,在直角三角形OPQ中,利用銳角三角函數定義表示出OQ與PQ,即可確定出P的坐標.解:過P作PQ⊥OB,交OB于點Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,則P的坐標為(cosα,sinα),故選C.10、B【詳解】隨機事件.根據隨機事件的定義,隨機事件就是可能發(fā)生,也可能不發(fā)生的事件,即可判斷:拋1枚均勻硬幣,落地后可能正面朝上,也可能反面朝上,故拋1枚均勻硬幣,落地后正面朝上是隨機事件.故選B.11、B【解析】y=x2-2x+3=(x-1)2+2,將其向上平移2個單位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3個單位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故選B.12、A【分析】連接OB,根據⊙O的半徑為5,CD=2得出OD的長,再由垂徑定理的推論得出OC⊥AB,由勾股定理求出BD的長,進而可得出結論.【詳解】解:連接OB,如圖所示:∵⊙O的半徑為5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD=∴AB=2BD=1.故選:A.本題主要考查的是圓中的垂徑定理“垂直于弦的直徑平分弦且平分這條弦所對的兩條弧”,掌握垂徑定理是解此題的關鍵.二、填空題(每題4分,共24分)13、不具有【分析】根據抽取樣本的注意事項即要考慮樣本具有廣泛性與代表性,其代表性就是抽取的樣本必須是隨機的,以此進行分析.【詳解】解:要估計全市九年級學生早讀時間情況,應從該市所以學校九年級中隨機抽取100人進行調查,所以在這個問題中調查的樣本不具有代表性.故此空填“不具有”.本題考查抽樣調查的可靠性,解題時注意:樣本具有代表性是指抽取的樣本必須是隨機的,即各個方面,各個層次的對象都要有所體現(xiàn).14、=31.1【分析】根據題意,第一次降價后的售價為,第二次降價后的售價為,據此列方程得解.【詳解】根據題意,得:=31.1故答案為:=31.1.本題考查一元二次方程的應用,關鍵是理解第二次降價是以第一次降價后的售價為單位“1”的.15、1【分析】作PE⊥OA,再根據角平分線的性質得出PE=PD即可得出答案.【詳解】過P作PE⊥OA于點E,∵點P是∠AOB平分線OC上一點,PD⊥OB,∴PE=PD,∵PD=1,∴PE=1,∴點P到邊OA的距離是1.故答案為1.本題考查角平分線的性質,關鍵在于牢記角平分線的性質并靈活運用.16、1【解析】根據勾股定理求出△ABC的各個邊的長度,根據勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【詳解】如圖:長方形AEFM,連接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1本題考查了解直角三角形和勾股定理及逆定理等知識點,能求出∠ACB=90°是解此題的關鍵.17、【分析】連接OB,OF,根據正五邊形和正三角形的性質求出∠BAF=24°,再由圓周角定理得∠BOF=48°,最后由弧長公式求出的長.【詳解】解:連接OB,OF,如圖,根據正五邊形、正三角形和圓是軸對稱圖形可知∠BAF=∠EAG,∵△AFG是等邊三角形,∴∠FAG=60°,∵五邊形ABCDE是正五邊形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半徑為3,∴的弧長為:故答案為:本題主要考查正多邊形與圓、弧長公式等知識,得出圓心角度數是解題關鍵.18、,【詳解】解:由圖象可知對稱軸x=2,與x軸的一個交點橫坐標是5,它到直線x=2的距離是3個單位長度,所以另外一個交點橫坐標是-1.
所以,.
故答案是:,.考查拋物線與x軸的交點,拋物線與x軸兩個交點的橫坐標的和除以2后等于對稱軸.三、解答題(共78分)19、(1)見解析;(2)見解析;;(3).【分析】(1)由中心對稱的定義和性質作圖變換后的對應點,再順次連接即可得;
(2)由旋轉變換的定義和性質作圖變換后的對應點,再順次連接即可得;
(3)利用弧長公式計算可得.【詳解】(1)如圖所示,即為所求.(2)如圖所示,即為所求,其中點的坐標為,故答案為:.(3)∵,,∴點所經過的路徑長為.本題考查了作圖-旋轉變換:根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.20、20.3108【分析】(1)先求出樣本總數,進而可得出m、n的值;(2)根據(1)中n的值可得出,“乒乓球”所在的扇形的圓心角的度數;(3)依據求簡單事件的概率即可求出.【詳解】解:(1)∵喜歡籃球的是60人,頻率是0.25,∴樣本數=60÷0.25=1.∵喜歡羽毛球場的頻率是0.20,喜歡乒乓球的是72人,∴n=72÷1=0.30,m=0.20×1=2.故答案為2,0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案為108;(3)從選擇“籃球”選項的60名學生中,隨機抽取10名學生作為代表進行投籃測試,則其中某位學生被選中的概率是10÷60=.故答案為(1)2,0.3(2)108(3).(3)題考查的是扇形統(tǒng)計圖,熟知通過扇形統(tǒng)計圖可以很清楚地表示出各部分數量同總數之間的關系.用整個圓的面積表示總數(單位1),用圓的扇形面積表示各部分占總數的百分數是解答此題的關鍵.21、(1)8名學生中至少有三類垃圾投放正確的概率為;(2)列表見解析.【解析】直接利用概率公式求解可得;
抽取兩人接受采訪,故利用列表法可得所有等可能結果.【詳解】解:(1)8名學生中至少有三類垃圾投放正確有5人,故至少有三類垃圾投放正確的概率為;(2)列表如下:此題考查的是用列表法或樹狀圖法求概率列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件用到的知識點為:概率所求情況數與總情況數之比.22、(1),(2)隨的增大而減小時.【解析】(1)把,代入解析式,解方程組求出a、b的值即可;(2)根據(1)中所得解析式可得對稱軸,a>0,在對稱軸左側y隨的增大而減小根據二次函數的性質即可得答案.【詳解】(1)∵拋物線經過點,.∴解得∴這條拋物線所對應的函數表達式為.(2)∵拋物線的對稱軸為直線,∵,∴圖象開口向上,∴y隨的增大而減小時x<1.本題考查待定系數法確定二次函數解析式及二次函數的性質,a>0,開口向上,在對稱軸左側y隨的增大而減小,a<0,開口向下,在對稱軸右側y隨的增大而減小,熟練掌握二次函數的圖像和性質是解題關鍵.23、此時快艇與島嶼C的距離是20nmile.【分析】過點D作DE⊥AB于點E,過點C作CF⊥AB于點F,由DE∥CF,DC∥EF,∠CFE=90°可得出四邊形CDEF為矩形,設DE=xnmile,則AE=x(nmile),BE=x(nmile),由AB=6nmile,可得出關于x的一元一次方程,解之即可得出x的值,再在Rt△CBF中,通過解直角三角形可求出BC的長.【詳解】解:過點D作DE⊥AB于點E,過點C作CF⊥AB于點F,如圖所示.則DE∥CF,∠DEA=∠CFA=90°.∵DC∥EF,∴四邊形CDEF為平行四邊形.又∵∠CFE=90°,∴?CDEF為矩形,∴CF=DE.根據題意,得:∠DAB=45°,∠DBE=60°,∠CBF=45°.設DE=x(nmile),在Rt△DEA中,∵tan∠DAB=,∴AE==x(nmile).在Rt△DEB中,∵tan∠DBE=,∴BE==x(nmile).∵AB=20×0.3=6(nmile),AE﹣BE=AB,∴x﹣x=6,解得:x=9+3,∴CF=DE=(9+3)nmile.在Rt△CBF中,sin∠CBF=,∴BC=≈20(nmile).答:此時快艇與島嶼C的距離是20nmile.本題考查了解直角三角形的應用——方向角問題,通過解直角三角形求出BC的長是解題的關鍵.24、(1);(2)①見解析;②;(3)4【分析】(1)由于三角形的外心是三邊垂直平分線的交點,故只要利用網格特點作出AB與AC的垂直平分線,其交點即為圓心M;(2)根據位似圖形的性質畫圖即可;由位似圖形的性質即可求得點D坐標;(3)利用(2)題的圖形,根據三角形的面積公式求解即可.【詳解】解:(1)如圖1,點M是AB與AC的垂直平分線的交點,即為△ABC的外接圓圓心,其坐標是(2,2);故答案為:(2,2);(2)①如圖2所示;②點坐標為(4,6);故答案為:(4,6);(3)的面積=個平方單位.故答案為:4.本題考查了三角形外心的性質、坐標系中位似圖形的作圖和三角形的面積等知識,屬于??碱}型,熟練掌握基本知識是解題關鍵.25、(1)(2)P點坐標(﹣5,﹣),Q點坐標(3,﹣)(3)M點的坐標為(﹣,),(﹣3,1)【解析】試題分析:(1)根據自變量與函數值的對應關系,可得A、C點坐標,根據待定系數法,可得函數解析式;(2)根據平行于x軸的直線與拋物線的交點關于對稱軸對稱,可得P、Q關于直線x=﹣1對稱,根據PQ的長,可得P點的橫坐標,Q點的橫坐標,根據自變量與函數值的對應關系,可得答案;(3)根據兩組對邊對應成比例且夾角相等的兩個三角形相似,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 導流工程施工方案
- 七年級英語起始單元音形義基礎構建教學方案-基于Starter Units 13的差異化教學設計
- 民宿經營標準化管理方案
- 人員招聘與錄用管理制度
- 醫(yī)院感染控制與監(jiān)督管理方案
- 員工食堂滿意度調查與整改方案
- 智慧醫(yī)療數據安全解決方案
- 城市路燈照明工程施工組織方案
- 急性重癥膽囊炎患者PTGD后LC手術時機的病例對照研究:探尋最優(yōu)方案
- 竹產業(yè)發(fā)展規(guī)劃及市場分析報告
- 2026貴州省省、市兩級機關遴選公務員357人考試備考題庫及答案解析
- 兒童心律失常診療指南(2025年版)
- 北京通州產業(yè)服務有限公司招聘備考題庫必考題
- 2026年基金從業(yè)資格證考試題庫500道含答案(完整版)
- 2025年中國礦產資源集團所屬單位招聘筆試參考題庫附帶答案詳解(3卷)
- DB32/T+4396-2022《勘察設計企業(yè)質量管理標準》-(高清正版)
- 臺州市街頭鎮(zhèn)張家桐村調研報告
- 壓力排水管道安裝技術交底
- 電梯檢驗安全導則
- 糖代謝紊亂生物化學檢驗
- 科技基礎性工作專項項目科學數據匯交方案編制
評論
0/150
提交評論