二次型及其矩陣表示_第1頁(yè)
二次型及其矩陣表示_第2頁(yè)
二次型及其矩陣表示_第3頁(yè)
二次型及其矩陣表示_第4頁(yè)
二次型及其矩陣表示_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

二次型及其矩陣表示§5、1

二次型及其矩陣表示一、n元二次型二、非退化線性替換三、矩陣得合同四、小結(jié)§5、1

二次型及其矩陣表示§5、1

二次型及其矩陣表示解析幾何中選擇適當(dāng)角度θ,逆時(shí)針旋轉(zhuǎn)坐標(biāo)軸

(標(biāo)準(zhǔn)方程)中心與坐標(biāo)原點(diǎn)重合得有心二次曲線

問題得引入§5、1

二次型及其矩陣表示代數(shù)觀點(diǎn)下作適當(dāng)?shù)梅峭嘶€性替換

只含平方項(xiàng)得多項(xiàng)式二次齊次多項(xiàng)式

(標(biāo)準(zhǔn)形)§5、1

二次型及其矩陣表示一、n元二次型1、定義設(shè)P為數(shù)域,稱為數(shù)域P上得一個(gè)n元二次型(QuadraticForm)、①n個(gè)文字的二次齊次多項(xiàng)式§5、1

二次型及其矩陣表示注意2、

式①也可寫成1、為了計(jì)算與討論得方便,式①中寫成得系數(shù)§5、1

二次型及其矩陣表示(1)約定①中aij=aji,i<j,由xixj=xjxi,有②2、二次型得矩陣表示§5、1

二次型及其矩陣表示

則矩陣A稱為二次型的矩陣(matrix).§5、1

二次型及其矩陣表示(2)令§5、1

二次型及其矩陣表示于就是有大家有疑問的,可以詢問和交流可以互相討論下,但要小聲點(diǎn)§5、1

二次型及其矩陣表示注意2、二次型與它得矩陣相互唯一確定,即正因?yàn)槿绱?討論二次型時(shí)矩陣就是一個(gè)有力得工具、

若且,則1.二次型的矩陣總是對(duì)稱矩陣,即(這表明在選定文字下,二次型完全由對(duì)稱矩陣A決定.)§5、1

二次型及其矩陣表示練習(xí)1寫出矩陣表示1、實(shí)數(shù)域R上得2元二次型

3、復(fù)數(shù)域C上得4元二次型2.

實(shí)數(shù)域R上的3元二次型§5、1

二次型及其矩陣表示練習(xí)2

寫出下列二次型得矩陣其中§5、1

二次型及其矩陣表示二、非退化線性替換1、定義就是兩組文字,關(guān)系式③稱為由的一個(gè)線性替換;若系數(shù)行列式|cij|≠0,則稱③為非退化線性替換(non-degeneratelineartransformation)、§5、1

二次型及其矩陣表示.0就是非退化得、例1變換§5、1

二次型及其矩陣表示2、線性替換得矩陣表示則③可表示為X=CY

④若|C|≠0,則④為非退化線性替換、§5、1

二次型及其矩陣表示3、二次型經(jīng)過非退化線性替換仍為二次型————

————

————

————

是一個(gè)二次型.§5、1

二次型及其矩陣表示三、矩陣得合同1、合同具有對(duì)稱性(symmetry):反身性(reflexivity):注意

1、定義設(shè),若存在可逆矩陣使,則稱A與B合同(congruent).§5、1

二次型及其矩陣表示3、與對(duì)稱矩陣合同得矩陣就是對(duì)稱矩陣、

2、合同矩陣具有相同得秩、即C1C2可逆、傳遞性(transitivity):§5、1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論