數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題真題經(jīng)典套題及答案解析_第1頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題真題經(jīng)典套題及答案解析_第2頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題真題經(jīng)典套題及答案解析_第3頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題真題經(jīng)典套題及答案解析_第4頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題真題經(jīng)典套題及答案解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題真題經(jīng)典套題及答案解析一、解答題1.如圖所示,已知射線.點E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.2.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.3.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點D、E分別是邊AB、BC的中點,若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點D、E分別在邊AB、AC上,連接BE、CD交于點O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.4.如圖,在中,與的角平分線交于點.(1)若,則;(2)若,則;(3)若,與的角平分線交于點,的平分線與的平分線交于點,,的平分線與的平分線交于點,則.5.已知,,點為射線上一點.(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點在延長線上時,求證:;(3)如圖3,平分,交于點,交于點,且:,,,求的度數(shù).6.閱讀材料:如圖1,點是直線上一點,上方的四邊形中,,延長,,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.請按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長,交的平分線于點(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).7.(數(shù)學(xué)經(jīng)驗)三角形的中線,角平分線,高是三角形的重要線段,我們知道,三角形的3條高所在直線交于同一點.(1)①如圖1,△ABC中,∠A=90°,則△ABC的三條高所在的直線交于點;②如圖2,△ABC中,∠BAC>90°,已知兩條高BE,AD,請你僅用一把無刻度的直尺(僅用于過任意兩點作直線、連接任意兩點、延長任意線段)畫出△ABC的第三條高.(不寫畫法,保留作圖痕跡).(綜合應(yīng)用)(2)如圖3,在△ABC中,∠ABC>∠C,AD平分∠BAC,過點B作BE⊥AD于點E.①若∠ABC=80°,∠C=30°,則∠EBD=;②請寫出∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系,并說明理由.(拓展延伸)(3)三角形的中線將三角形分成面積相等的兩部分,如果兩個三角形的高相同,則他們的面積比等于對應(yīng)底邊的比.如圖4,M是BC上一點,則有.如圖5,△ABC中,M是BC上一點BM=BC,N是AC的中點,若三角形ABC的面積是m請直接寫出四邊形CMDN的面積.(用含m的代數(shù)式表示)8.(1)證明:兩條平行線被第三條直線所截,一對同旁內(nèi)角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點O.求證:EO⊥FO.(3)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點O,∠P=102°,求∠O的度數(shù).9.如圖1,直線m與直線n相交于O,點A在直線m上運動,點B在直線n上運動,AC、BC分別是∠BAO和∠ABO的角平分線.(1)若∠BAO=50o,∠ABO=40o,求∠ACB的度數(shù);(2)如圖2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點D,點A、B在運動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其度數(shù)(用含α的代數(shù)式表示);(3)如圖3,若直線m與直線n相互垂直,延長AB至E,已知∠ABO、∠OBE的角平分線與∠BOQ的角平分線及延長線分別相交于D、F,在△BDF中,如果有一個角是另一個角的3倍,請直接寫出∠BAO的度數(shù).10.已知:直線,點E,F(xiàn)分別在直線AB,CD上,點M為兩平行線內(nèi)部一點.(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為________;(直接寫出答案)(2)如圖2,∠MEB和∠MFD的角平分線交于點N,若∠EMF等于130°,求∠ENF的度數(shù);(3)如圖3,點G為直線CD上一點,延長GM交直線AB于點Q,點P為MG上一點,射線PF、EH相交于點H,滿足,,設(shè)∠EMF=α,求∠H的度數(shù)(用含α的代數(shù)式表示).【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.2.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.3.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問題連接AE.∵點D、E分別是邊AB、BC的中點,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.4.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點O是∠AB故答案為:110°;C與∠ACB的角平分線的交點,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.5.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角,運用三角形外角性質(zhì)進行計算求解.解題時注意:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.6.閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過H點作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點評】本題主要考查了平行線的性質(zhì)的運用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運用等角的余角(補角)相等進行推導(dǎo).余角和補角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運用.7.(1)①A;②見解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長BE,DA,兩者交于F,連接CF交BA的延長線解析:(1)①A;②見解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長BE,DA,兩者交于F,連接CF交BA的延長線于H,CH即為所求;(2)①由三角形內(nèi)角和定理和角平分線的性質(zhì)可以得出∠BAE=∠BAC=35°,再由直角三角形的性質(zhì)得∠ABE=55°,即可求解;②由三角形內(nèi)角和定理和角平分線的性質(zhì)求解即可;(3)連接CD,由中線的性質(zhì)得S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,S△ABN=S△CBN=m,再求出S△CDM=S△BCD=,S△ACM=S△ABC=m,利用面積關(guān)系求解即可.【詳解】解:(1)①∵直角三角形三條高的交點為直角頂點,∠A=90°,∴△ABC的三條高所在直線交于點A,故答案為:A;②如圖,分別延長BE,DA,兩者交于F,連接CF交BA的延長線于H,CH即為所求;(2)①∵∠ABC=80°,∠ACB=30°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAE=∠BAC=35°,∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣35°=55°,∴∠EBD=∠ABC﹣∠ABE=80°﹣55°=25°,故答案為:25°;②∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系為:2∠EBD=∠ABC﹣∠ACB∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣∠BAD,∴∠EBD=∠ABC﹣∠ABE=∠ABC+∠BAD﹣90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAD=90°﹣∠ABC﹣∠ACB,∴∠EBD=∠ABC+∠BAD﹣90°=∠ABC+90°﹣∠ABC﹣∠C﹣90°=∠ABC﹣∠C,∴2∠EBD=∠ABC﹣∠ACB,故答案為:2∠EBD=∠ABC﹣∠ACB;(3)連接CD,如圖所示:∵N是AC的中點,∴,∴S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,∵△ABC的面積是m,∴S△ABN=S△CBN=m,∴S△BCD=S△ABD=m﹣a,∵BM=BC,∴,∴,,∴S△CDM=3S△BDM,S△ACM=3S△ABM,∴S△CDM=S△BCD=×(m﹣a)=,S△ACM=S△ABC=m,∵S△ACM=S四邊形CMDN+S△ADN=S△CDM+S△CDN+S△ADN,即:,解得:a=,∴S四邊形CMDN=S△CDM+S△CDN=,【點睛】本題主要考查了三角形的高,三角形的中線,三角形內(nèi)角和,三角形面積,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.8.(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證明;(2)延長交于點,過點作交于點,結(jié)合(1)的方法即可證明;(3)延長、交于點,過點作交于點.結(jié)合(1)的方法可得,再根據(jù)角平分線定義即可求出結(jié)果.【詳解】(1)已知:如圖①,,直線分別交直線,于點,,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點作交直線于點.,,、分別平分、,.,,..;故答案為:直線分別交直線,于點,,、分別平分、,;(2)證明:如圖,延長交于點,過點作交于點,,,,.、分別平分、,,,,..;(3)解:如圖,延長、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論