高考數(shù)學(xué) 二輪復(fù)習(xí) 核心考點(diǎn) 思想01 函數(shù)與方程思想(講)【解析版】_第1頁(yè)
高考數(shù)學(xué) 二輪復(fù)習(xí) 核心考點(diǎn) 思想01 函數(shù)與方程思想(講)【解析版】_第2頁(yè)
高考數(shù)學(xué) 二輪復(fù)習(xí) 核心考點(diǎn) 思想01 函數(shù)與方程思想(講)【解析版】_第3頁(yè)
高考數(shù)學(xué) 二輪復(fù)習(xí) 核心考點(diǎn) 思想01 函數(shù)與方程思想(講)【解析版】_第4頁(yè)
高考數(shù)學(xué) 二輪復(fù)習(xí) 核心考點(diǎn) 思想01 函數(shù)與方程思想(講)【解析版】_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第三篇思想方法篇思想01函數(shù)與方程思想(講)考向速覽方法技巧典例分析1.函數(shù)與方程思想的含義(1)函數(shù)思想是用運(yùn)動(dòng)和變化的觀點(diǎn)分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,是對(duì)函數(shù)概念的本質(zhì)認(rèn)識(shí),建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖象和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題,從而使問(wèn)題獲得解決的思想方法.(2)方程思想就是分析數(shù)學(xué)問(wèn)題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過(guò)解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問(wèn)題,使問(wèn)題獲得解決的思想方法.(3)函數(shù)與方程思想在一定的條件下是可以相互轉(zhuǎn)化的,是相輔相成的.函數(shù)思想重在對(duì)問(wèn)題進(jìn)行動(dòng)態(tài)的研究,方程思想則是在動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系.方程思想與函數(shù)思想密切相關(guān):方程f(x)=0的解就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo);函數(shù)y=f(x)也可以看作二元方程f(x)-y=0,通過(guò)方程進(jìn)行研究;方程f(x)=a有解,當(dāng)且僅當(dāng)a屬于函數(shù)f(x)的值域.函數(shù)與方程的這種相互轉(zhuǎn)化關(guān)系十分重要.2.高考把函數(shù)與方程思想作為思想方法的重點(diǎn)來(lái)考查,特別是在有關(guān)函數(shù)、三角函數(shù)、數(shù)列、不等式、解析幾何、平面向量、立體幾何等題目中.高考使用客觀題考查函數(shù)與方程思想的基本運(yùn)算,而在主觀題中,則從更深的層次,在知識(shí)網(wǎng)絡(luò)的交匯處,從思想方法與相關(guān)能力相結(jié)合的角度深入考查.3.常見方法:(1)運(yùn)用函數(shù)相關(guān)概念的本質(zhì)解題在理解函數(shù)的定義域、值域、性質(zhì)等本質(zhì)的基礎(chǔ)上,主動(dòng)、準(zhǔn)確地運(yùn)用它們解答問(wèn)題.常見問(wèn)題有:求函數(shù)的定義域、解析式、最值,研究函數(shù)的性質(zhì).(2)利用函數(shù)性質(zhì)求解方程問(wèn)題函數(shù)與方程相互聯(lián)系,借助函數(shù)的性質(zhì)可以解決方程解的個(gè)數(shù)及參數(shù)取值范圍的問(wèn)題.(3)構(gòu)造函數(shù)解決一些數(shù)學(xué)問(wèn)題在一些數(shù)學(xué)問(wèn)題的研究中,可以通過(guò)建立函數(shù)關(guān)系式,把要研究的問(wèn)題轉(zhuǎn)化為函數(shù)的性質(zhì),達(dá)到化繁為簡(jiǎn),化難為易的效果.01函數(shù)與方程思想在方程、不等式中的應(yīng)用【核心提示】1.函數(shù)與不等式的相互轉(zhuǎn)化,對(duì)函數(shù)y=f(x),當(dāng)y>0時(shí),就化為不等式f(x)>0,借助于函數(shù)的圖象和性質(zhì)可解決有關(guān)問(wèn)題,而研究函數(shù)的性質(zhì)也離不開不等式.2.含參不等式恒成立與存在性問(wèn)題函數(shù)(方程)法是指通過(guò)構(gòu)造函數(shù),把恒成立問(wèn)題與轉(zhuǎn)化為函數(shù)的值域問(wèn)題,從而得到關(guān)于參數(shù)的方程的方法.破解此類題的關(guān)鍵點(diǎn):①靈活轉(zhuǎn)化:(1)“關(guān)于的不等式在區(qū)間上恒成立”轉(zhuǎn)化為“”;“關(guān)于的不等式在區(qū)間上恒成立”轉(zhuǎn)化為“”;(2)“關(guān)于存在使得不等式成立”轉(zhuǎn)化為“”;“關(guān)于存在使得不等式成立”轉(zhuǎn)化為“”;②求函數(shù)值域,利用函數(shù)的單調(diào)性、導(dǎo)數(shù)、圖象等求函數(shù)的值域;③得出結(jié)論,列出參數(shù)所滿足的方程,通過(guò)解方程,求出的值.【典例分析】典例1.(2022·浙江·統(tǒng)考高考真題)已知,若對(duì)任意,則(

)A. B. C. D.【答案】D【分析】將問(wèn)題轉(zhuǎn)換為,再結(jié)合畫圖求解.【詳解】由題意有:對(duì)任意的,有恒成立.設(shè),,即的圖像恒在的上方(可重合),如下圖所示:由圖可知,,,或,,故選:D.典例2.(2022·全國(guó)·統(tǒng)考高考真題)已知,則(

)A. B. C. D.【答案】A【分析】法一:根據(jù)指對(duì)互化以及對(duì)數(shù)函數(shù)的單調(diào)性即可知,再利用基本不等式,換底公式可得,,然后由指數(shù)函數(shù)的單調(diào)性即可解出.【詳解】[方法一]:(指對(duì)數(shù)函數(shù)性質(zhì))由可得,而,所以,即,所以.又,所以,即,所以.綜上,.[方法二]:【最優(yōu)解】(構(gòu)造函數(shù))由,可得.根據(jù)的形式構(gòu)造函數(shù),則,令,解得,由知.在上單調(diào)遞增,所以,即,又因?yàn)椋?故選:A.【整體點(diǎn)評(píng)】法一:通過(guò)基本不等式和換底公式以及對(duì)數(shù)函數(shù)的單調(diào)性比較,方法直接常用,屬于通性通法;法二:利用的形式構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性得出大小關(guān)系,簡(jiǎn)單明了,是該題的最優(yōu)解.典例3.【多選題】(2023·吉林通化·梅河口市第五中學(xué)校考一模)下列不等式成立的是(

)A. B.C. D.【答案】BCD【分析】對(duì)于選項(xiàng)A,運(yùn)用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)單調(diào)性比較即可;對(duì)于選項(xiàng)B,構(gòu)造函數(shù)運(yùn)用函數(shù)的單調(diào)性比較即可;對(duì)于選項(xiàng)C,作差后運(yùn)用基本不等式判斷;對(duì)于選項(xiàng)D,尋找中介值比較即可.【詳解】對(duì)于選項(xiàng)A,因?yàn)?,所以,,所以,故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B,設(shè),則,又因?yàn)?,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,即:,又因?yàn)?,所?故選項(xiàng)B正確;對(duì)于選項(xiàng)C,,因?yàn)椋?,所以,即?故選項(xiàng)C正確;對(duì)于選項(xiàng)D,因?yàn)?,所以,所以,又因?yàn)?,所以,所以,所?故選項(xiàng)D正確.故選:BCD.02函數(shù)與方程思想在數(shù)列中的應(yīng)用【核心提示】數(shù)列的通項(xiàng)與前n項(xiàng)和是自變量為正整數(shù)的函數(shù),可用函數(shù)的觀點(diǎn)去處理數(shù)列問(wèn)題,常涉及最值問(wèn)題或參數(shù)范圍問(wèn)題,一般利用二次函數(shù);等差數(shù)列或等比數(shù)列的基本量的計(jì)算一般化歸為方程(組)來(lái)解決.【典例分析】典例4.(2022·全國(guó)·高二課時(shí)練習(xí))設(shè)數(shù)列為等差數(shù)列,其前n項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值是()A.10 B.20 C.30 D.40【答案】B【解析】【分析】設(shè)等差數(shù)列的公差為d,根據(jù)等差數(shù)列通項(xiàng)公式列出方程,求出和,進(jìn)而求出等差數(shù)列的前n項(xiàng)和為,再根據(jù)二次函數(shù)的性質(zhì),即可求出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為d,由解得∴.∴當(dāng)時(shí),取得最大值.∵對(duì)任意都有成立,∴為數(shù)列的最大值,∴.故選:B.典例5.(2023·河南·校聯(lián)考模擬預(yù)測(cè))記正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足.若不等式恒成立,則實(shí)數(shù)的取值范圍是__________.【答案】【分析】由寫出的式子,通過(guò)兩式相減化簡(jiǎn)得出,再利用不等式恒成立問(wèn)題,得出,進(jìn)而分析右側(cè)式子的最值,即可求出結(jié)果.【詳解】因?yàn)棰伲援?dāng)時(shí),②.①-②,得,所以,因?yàn)閿?shù)列是正項(xiàng)數(shù)列,則.當(dāng)時(shí),,則,符合式,從而,是首項(xiàng)為,公比為的等差數(shù)列,所以,由,得,即.令,因?yàn)樵跁r(shí)單調(diào)遞增,所以單調(diào)遞減,則當(dāng)時(shí),取得最大值,且為,所以.故答案為:.典例6.(2021·全國(guó)·統(tǒng)考高考真題)設(shè)是首項(xiàng)為1的等比數(shù)列,數(shù)列滿足.已知,,成等差數(shù)列.(1)求和的通項(xiàng)公式;(2)記和分別為和的前n項(xiàng)和.證明:.【答案】(1),;(2)證明見解析.【分析】(1)利用等差數(shù)列的性質(zhì)及得到,解方程即可;(2)利用公式法、錯(cuò)位相減法分別求出,再作差比較即可.【詳解】(1)因?yàn)槭鞘醉?xiàng)為1的等比數(shù)列且,,成等差數(shù)列,所以,所以,即,解得,所以,所以.(2)[方法一]:作差后利用錯(cuò)位相減法求和,,.設(shè),

⑧則.

⑨由⑧-⑨得.所以.因此.故.[方法二]【最優(yōu)解】:公式法和錯(cuò)位相減求和法證明:由(1)可得,,①,②①②得,所以,所以,所以.[方法三]:構(gòu)造裂項(xiàng)法由(Ⅰ)知,令,且,即,通過(guò)等式左右兩邊系數(shù)比對(duì)易得,所以.則,下同方法二.[方法四]:導(dǎo)函數(shù)法設(shè),由于,則.又,所以,下同方法二.【整體點(diǎn)評(píng)】本題主要考查數(shù)列的求和,涉及到等差數(shù)列的性質(zhì),錯(cuò)位相減法求數(shù)列的和,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題,其中證明不等式時(shí)采用作差法,或者作商法要根據(jù)式子得結(jié)構(gòu)類型靈活選擇,關(guān)鍵是要看如何消項(xiàng)化簡(jiǎn)的更為簡(jiǎn)潔.(2)的方法一直接作差后利用錯(cuò)位相減法求其部分和,進(jìn)而證得結(jié)論;方法二根據(jù)數(shù)列的不同特點(diǎn),分別利用公式法和錯(cuò)位相減法求得,然后證得結(jié)論,為最優(yōu)解;方法三采用構(gòu)造數(shù)列裂項(xiàng)求和的方法,關(guān)鍵是構(gòu)造,使,求得的表達(dá)式,這是錯(cuò)位相減法的一種替代方法,方法四利用導(dǎo)數(shù)方法求和,也是代替錯(cuò)位相減求和法的一種方法.03函數(shù)與方程思想在解析幾何中的應(yīng)用【核心提示】1.解析幾何中求斜率、截距、半徑、點(diǎn)的坐標(biāo)、離心率等幾何量經(jīng)常要用到方程(組)的思想;直線與圓錐曲線的位置關(guān)系問(wèn)題,可以通過(guò)轉(zhuǎn)化為一元二次方程,利用判別式進(jìn)行解決;求變量的取值范圍和最值問(wèn)題常轉(zhuǎn)化為求函數(shù)的值域、最值,用函數(shù)的思想分析解答.2.直線與圓錐曲線的綜合問(wèn)題,通常借助根的判別式和根與系數(shù)的關(guān)系進(jìn)行求解,這是方程思想在解析幾何中的重要應(yīng)用.解析幾何問(wèn)題的方程(函數(shù))法可以拓展解決解析幾何問(wèn)題的思維,通過(guò)代數(shù)運(yùn)算、方程判定等解決解析幾何中的位置關(guān)系、參數(shù)取值等問(wèn)題.【典例分析】典例7.(2021·全國(guó)·統(tǒng)考高考真題)設(shè)B是橢圓的上頂點(diǎn),點(diǎn)P在C上,則的最大值為(

)A. B. C. D.2【答案】A【分析】設(shè)點(diǎn),由依題意可知,,,再根據(jù)兩點(diǎn)間的距離公式得到,然后消元,即可利用二次函數(shù)的性質(zhì)求出最大值.【詳解】設(shè)點(diǎn),因?yàn)?,,所以,而,所以?dāng)時(shí),的最大值為.故選:A.典例8.(2023春·北京·高三北京市陳經(jīng)綸中學(xué)??奸_學(xué)考試)卵圓是常見的一類曲線,已知一個(gè)卵圓的方程為:,為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn)為卵圓上任意一點(diǎn),則下列說(shuō)法中正確的是________.①卵圓關(guān)于軸對(duì)稱②卵圓上不存在兩點(diǎn)關(guān)于直線對(duì)稱③線段長(zhǎng)度的取值范圍是④的面積最大值為【答案】①③④【分析】利用點(diǎn)和均滿足方程,即可判斷①;設(shè)和都在卵圓上,再解即可判斷②;利用兩點(diǎn)間的距離公式表示,然后利用導(dǎo)數(shù)研究其最值,即可判斷③;利用三角形的面積公式表示出,然后利用導(dǎo)數(shù)研究其最值,即可判斷④.【詳解】對(duì)于①,設(shè)是卵圓上的任意一個(gè)點(diǎn),因?yàn)?,所以點(diǎn)也在卵圓上,又點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,所以卵圓關(guān)于軸對(duì)稱,故①正確;對(duì)于②,設(shè)在卵圓上,關(guān)于直線對(duì)稱的點(diǎn)也在卵圓上,則,解得或,所以卵圓上存在兩點(diǎn)關(guān)于直線對(duì)稱,故②錯(cuò)誤;對(duì)于③,由,得,所以,又,所以,設(shè)點(diǎn),則,令,則,令,則或,當(dāng)或時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞增,在上遞減,又,且,所以,即,所以,故③正確;對(duì)于④,點(diǎn),,令,則,當(dāng)時(shí),,當(dāng)時(shí),,所以在上遞減,在上遞增,所以,此時(shí)的面積取得最大值,故④正確.故答案為:①③④.典例9.(2021·全國(guó)·統(tǒng)考高考真題)已知拋物線的焦點(diǎn)為,且與圓上點(diǎn)的距離的最小值為.(1)求;(2)若點(diǎn)在上,是的兩條切線,是切點(diǎn),求面積的最大值.【答案】(1);(2).【分析】(1)根據(jù)圓的幾何性質(zhì)可得出關(guān)于的等式,即可解出的值;(2)設(shè)點(diǎn)、、,利用導(dǎo)數(shù)求出直線、,進(jìn)一步可求得直線的方程,將直線的方程與拋物線的方程聯(lián)立,求出以及點(diǎn)到直線的距離,利用三角形的面積公式結(jié)合二次函數(shù)的基本性質(zhì)可求得面積的最大值.【詳解】(1)[方法一]:利用二次函數(shù)性質(zhì)求最小值由題意知,,設(shè)圓M上的點(diǎn),則.所以.從而有.因?yàn)?,所以?dāng)時(shí),.又,解之得,因此.[方法二]【最優(yōu)解】:利用圓的幾何意義求最小值拋物線的焦點(diǎn)為,,所以,與圓上點(diǎn)的距離的最小值為,解得;(2)[方法一]:切點(diǎn)弦方程+韋達(dá)定義判別式求弦長(zhǎng)求面積法拋物線的方程為,即,對(duì)該函數(shù)求導(dǎo)得,設(shè)點(diǎn)、、,直線的方程為,即,即,同理可知,直線的方程為,由于點(diǎn)為這兩條直線的公共點(diǎn),則,所以,點(diǎn)A、的坐標(biāo)滿足方程,所以,直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,,所以,,點(diǎn)到直線的距離為,所以,,,由已知可得,所以,當(dāng)時(shí),的面積取最大值.[方法二]【最優(yōu)解】:切點(diǎn)弦法+分割轉(zhuǎn)化求面積+三角換元求最值同方法一得到.過(guò)P作y軸的平行線交于Q,則..P點(diǎn)在圓M上,則.故當(dāng)時(shí)的面積最大,最大值為.[方法三]:直接設(shè)直線AB方程法設(shè)切點(diǎn)A,B的坐標(biāo)分別為,.設(shè),聯(lián)立和拋物線C的方程得整理得.判別式,即,且.拋物線C的方程為,即,有.則,整理得,同理可得.聯(lián)立方程可得點(diǎn)P的坐標(biāo)為,即.將點(diǎn)P的坐標(biāo)代入圓M的方程,得,整理得.由弦長(zhǎng)公式得.點(diǎn)P到直線的距離為.所以,其中,即.當(dāng)時(shí),.【整體點(diǎn)評(píng)】(1)方法一利用兩點(diǎn)間距離公式求得關(guān)于圓M上的點(diǎn)的坐標(biāo)的表達(dá)式,進(jìn)一步轉(zhuǎn)化為關(guān)于的表達(dá)式,利用二次函數(shù)的性質(zhì)得到最小值,進(jìn)而求得的值;方法二,利用圓的性質(zhì),與圓上點(diǎn)的距離的最小值,簡(jiǎn)潔明快,為最優(yōu)解;(2)方法一設(shè)點(diǎn)、、,利用導(dǎo)數(shù)求得兩切線方程,由切點(diǎn)弦方程思想得到直線的坐標(biāo)滿足方程,然手與拋物線方程聯(lián)立,由韋達(dá)定理可得,,利用弦長(zhǎng)公式求得的長(zhǎng),進(jìn)而得到面積關(guān)于坐標(biāo)的表達(dá)式,利用圓的方程轉(zhuǎn)化得到關(guān)于的二次函數(shù)最值問(wèn)題;方法二,同方法一得到,,過(guò)P作y軸的平行線交于Q,則.由求得面積關(guān)于坐標(biāo)的表達(dá)式,并利用三角函數(shù)換元求得面積最大值,方法靈活,計(jì)算簡(jiǎn)潔,為最優(yōu)解;方法三直接設(shè)直線,聯(lián)立直線和拋物線方程,利用韋達(dá)定理判別式得到,且.利用點(diǎn)在圓上,求得的關(guān)系,然后利用導(dǎo)數(shù)求得兩切線方程,解方程組求得P的坐標(biāo),進(jìn)而利用弦長(zhǎng)公式和點(diǎn)到直線距離公式求得面積關(guān)于的函數(shù)表達(dá)式,然后利用二次函數(shù)的性質(zhì)求得最大值;04函數(shù)與方程思想在立體幾何中的應(yīng)用【核心提示】立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用列方程或建立函數(shù)表達(dá)式的方法加以解決.【典例分析】典例10.(2022·全國(guó)·統(tǒng)考高考真題)已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為(

)A. B. C. D.【答案】C【分析】方法一:先證明當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為,進(jìn)而得到四棱錐體積表達(dá)式,再利用均值定理去求四棱錐體積的最大值,從而得到當(dāng)該四棱錐的體積最大時(shí)其高的值.【詳解】[方法一]:【最優(yōu)解】基本不等式設(shè)該四棱錐底面為四邊形ABCD,四邊形ABCD所在小圓半徑為r,設(shè)四邊形ABCD對(duì)角線夾角為,則(當(dāng)且僅當(dāng)四邊形ABCD為正方形時(shí)等號(hào)成立)即當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為又設(shè)四棱錐的高為,則,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立.故選:C[方法二]:統(tǒng)一變量+基本不等式由題意可知,當(dāng)四棱錐為正四棱錐時(shí),其體積最大,設(shè)底面邊長(zhǎng)為,底面所在圓的半徑為,則,所以該四棱錐的高,(當(dāng)且僅當(dāng),即時(shí),等號(hào)成立)所以該四棱錐的體積最大時(shí),其高.故選:C.[方法三]:利用導(dǎo)數(shù)求最值由題意可知,當(dāng)四棱錐為正四棱錐時(shí),其體積最大,設(shè)底面邊長(zhǎng)為,底面所在圓的半徑為,則,所以該四棱錐的高,,令,,設(shè),則,,,單調(diào)遞增,,,單調(diào)遞減,所以當(dāng)時(shí),最大,此時(shí).故選:C.【整體點(diǎn)評(píng)】方法一:思維嚴(yán)謹(jǐn),利用基本不等式求最值,模型熟悉,是該題的最優(yōu)解;方法二:消元,實(shí)現(xiàn)變量統(tǒng)一,再利用基本不等式求最值;方法三:消元,實(shí)現(xiàn)變量統(tǒng)一,利用導(dǎo)數(shù)求最值,是最值問(wèn)題的常用解法,操作簡(jiǎn)便,是通性通法.典例11.(2022·全國(guó)·統(tǒng)考高考真題)已知正四棱錐的側(cè)棱長(zhǎng)為l,其各頂點(diǎn)都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是(

)A. B. C. D.【答案】C【分析】設(shè)正四棱錐的高為,由球的截面性質(zhì)列方程求出正四棱錐的底面邊長(zhǎng)與高的關(guān)系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為,所以球的半徑,[方法一]:導(dǎo)數(shù)法設(shè)正四棱錐的底面邊長(zhǎng)為,高為,則,,所以,所以正四棱錐的體積,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),正四棱錐的體積取最大值,最大值為,又時(shí),,時(shí),,所以正四棱錐的體積的最小值為,所以該正四棱錐體積的取值范圍是.故選:C.[方法二]:基本不等式法由方法一故所以當(dāng)且僅當(dāng)取到,當(dāng)時(shí),得,則當(dāng)時(shí),球心在正四棱錐高線上,此時(shí),,正四棱錐體積,故該正四棱錐體積的取值范圍是典例12.(2023·河南·校聯(lián)考模擬預(yù)測(cè))在四面體ABCD中,,,.若四面體ABCD的體積為,則四面體ABCD外接球的表面積的最小值為______.【答案】【分析】證明四面體ABCD外接球的球心O是AD的中點(diǎn),連接OB,OC,設(shè)的中心H.連接OH,AH,設(shè),,根據(jù)四面體的體積得到,設(shè)四面體ABCD外接球O的半徑為R,求出,再利用導(dǎo)數(shù)求的最值即得解.【詳解】由,知,四面體ABCD外接球的球心O是AD的中點(diǎn),連接OB,OC,則.因?yàn)?,所以為等邊三角形,所以的外接圓的圓心為的中心H.連接OH,AH,則平面ABC.設(shè),,則點(diǎn)D到平面ABC的距離為2h,所以四面體ABCD的體積為,即,.設(shè)四面體ABCD外接球O的半徑為R,則,即.設(shè),則,令,則,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以在處取得極小值,即最小值,所以當(dāng)時(shí),R取得最小值,為,所以四面體ABCD外接球O的表面積的最小值為.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解答本題的關(guān)鍵有兩個(gè),其一是能準(zhǔn)確求出四面體ABCD外接球的表面積的解析式,其二是能利用導(dǎo)數(shù)求解函數(shù)的最值.05函數(shù)與方程思想在平面向量中的應(yīng)用【核心提示】1.平面向量問(wèn)題的函數(shù)(方程)法是把平面向量問(wèn)題,通過(guò)模、數(shù)量積等轉(zhuǎn)化為關(guān)于相應(yīng)參數(shù)的函數(shù)(方程)問(wèn)題,從而利用相關(guān)知識(shí)結(jié)合函數(shù)或方程思想來(lái)處理有關(guān)參數(shù)值問(wèn)題.破解此類題的關(guān)鍵點(diǎn):①向量代數(shù)化,利用平面向量中的模、數(shù)量積等結(jié)合向量的位置關(guān)系、數(shù)量積公式等進(jìn)行代數(shù)化,得到含有參數(shù)的函數(shù)(方程);②代數(shù)函數(shù)(方程)化,利用函數(shù)(方程)思想,結(jié)合相應(yīng)的函數(shù)(方程)的性質(zhì)求解問(wèn)題;③得出結(jié)論,根據(jù)條件建立相應(yīng)的關(guān)系式,并得到對(duì)應(yīng)的結(jié)論.2.平面向量中含函數(shù)(方程)的相關(guān)知識(shí),對(duì)平面向量的模進(jìn)行平方處理,把模問(wèn)題轉(zhuǎn)化為數(shù)量積問(wèn)題,再利用函數(shù)與方程思想來(lái)分析與處理,這是解決此類問(wèn)題一種比較常見的思維方式.【典例分析】典例13.(2022·北京·統(tǒng)考高考真題)在中,.P為所在平面內(nèi)的動(dòng)點(diǎn),且,則的取值范圍是(

)A. B. C. D.【答案】D【分析】依題意建立平面直角坐標(biāo)系,設(shè),表示出,,根據(jù)數(shù)量積的坐標(biāo)表示、輔助角公式及正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】解:依題意如圖建立平面直角坐標(biāo)系,則,,,因?yàn)?,所以在以為圓心,為半徑的圓上運(yùn)動(dòng),設(shè),,所以,,所以,其中,,因?yàn)?,所以,即;故選:D典例14.【多選題】(2023·全國(guó)·模擬預(yù)測(cè))如圖1是一款家居裝飾物——博古架,它始見于北宋宮廷、官邸.博古架是類似于書架式的木器,其每層形狀不規(guī)則,前后均敞開,無(wú)板壁封擋,便于從各個(gè)位置觀賞架上放置的器物.某博古架的部分示意圖如圖2中實(shí)線所示,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,則下列結(jié)論正確的是(

)A.B.若,則C.D.設(shè)Z為線段AK上任意一點(diǎn),則的取值范圍是【答案】AD【分析】根據(jù)已知條件建立平面直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo),利用向量垂直的條件及向量相等的條件,結(jié)合向量的坐標(biāo)運(yùn)算及二次函數(shù)的性質(zhì)即可求解.【詳解】以A為坐標(biāo)原點(diǎn),AD,AJ所在直線分別為x,y軸建立如圖所示的平面直角坐標(biāo)系.A選項(xiàng):易知,,,,所以,,則,所以,所以A正確.B選項(xiàng):易知,,,,,,所以,,,所以,得,解得,,所以,所以B錯(cuò)誤.C選項(xiàng):由選項(xiàng)A,B知,則,,,所以C錯(cuò)誤.D選項(xiàng):易知,,設(shè),則,,所以.因?yàn)?,所以?dāng)時(shí),取得最小值;當(dāng)時(shí),取得最大值40.所以的取值范圍是,所以D正確.故選:AD.典例15.(2023秋·天津南開·高三南開中學(xué)??茧A段練習(xí))如圖,在邊長(zhǎng)為1的正方形中,P是對(duì)角線上一點(diǎn),且,則__________,若點(diǎn)M為線段(含端點(diǎn))上的動(dòng)點(diǎn),則的最小值為__________.【答案】

【分析】建立平面直角坐標(biāo)系,求得正方形各頂點(diǎn)坐標(biāo),利用向量的坐標(biāo)運(yùn)算求得,可得的坐標(biāo),根據(jù)數(shù)量積的坐標(biāo)運(yùn)算,求得;設(shè),表示出,可得坐標(biāo),繼而求得的表達(dá)式,結(jié)合二次函數(shù)性質(zhì)求得的最小值.【詳解】如圖,以A為原點(diǎn),所在直線為x軸,所在直線為y軸建立平面直角坐標(biāo)系,則,∴,∵P是對(duì)角線上一點(diǎn),且,可得,∴,,∴;因?yàn)辄c(diǎn)M為線段(含端點(diǎn))上的動(dòng)點(diǎn),則設(shè),故,所以,,故,由于,所以時(shí),取到最小值,即的最小值為,故答案為:;.06函數(shù)與方程思想在概率統(tǒng)計(jì)中的應(yīng)用【核心提示】利用概率知識(shí)解決實(shí)際問(wèn)題,尤其是生產(chǎn)和經(jīng)營(yíng)問(wèn)題,其實(shí)與一般的應(yīng)用題在本質(zhì)上沒(méi)有什么不同,只是因?yàn)閭€(gè)別因素由確定變量變成不確定變量,從而導(dǎo)致結(jié)果的不確定性,所以才需要作決策優(yōu)化,拋開概率的煙霧彈,其實(shí)題目反映的都是最簡(jiǎn)單的公式(比如利潤(rùn)=收入—成本),所以面對(duì)復(fù)雜題目要學(xué)會(huì)審題,還是要回歸常識(shí).【典例分析】典例16.(2023春·山西晉城·高三??茧A段練習(xí))已知小李每天在上班路上都要經(jīng)過(guò)甲、乙兩個(gè)路口,且他在甲、乙兩個(gè)路口遇到紅燈的概率分別為.記小李在星期一到星期五這5天每天上班路上在甲路口遇到紅燈個(gè)數(shù)之和為,在甲、乙這兩個(gè)路口遇到紅燈個(gè)數(shù)之和為,則(

)A.B.C.小李星期一到星期五上班路上恰有3天至少遇到一次紅燈的概率的最大值為D.當(dāng)時(shí),【答案】BC【分析】確定,即可求出和,判斷A,B;表示一天至少遇到一次紅燈的概率為,可求出星期一到星期五上班路上恰有3天至少遇到一次紅燈的概率的表達(dá)式,利用導(dǎo)數(shù)可求得其最大值,判斷C;計(jì)算一天中遇到紅燈次數(shù)的數(shù)學(xué)期望,即可求得,判斷D.【詳解】對(duì)于A,B,小李在星期一到星期五這5天每天上班路上在甲路口遇到紅燈個(gè)數(shù)之和為,則,則,,A錯(cuò)誤,B正確;對(duì)于C,由題意可設(shè)一天至少遇到一次紅燈的概率為,星期一到星期五上班路上恰有3天至少遇到一次紅燈的概率為,設(shè),則,令,則(舍去)或或,當(dāng)或時(shí),,當(dāng)時(shí),,故時(shí),取得最大值,即,即小李星期一到星期五上班路上恰有3天至少遇到一次紅燈的概率的最大值為,此時(shí),C正確;對(duì)于D,當(dāng)時(shí),一天中不遇紅燈的概率為,遇到一次紅燈

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論