版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆湖北省天門經(jīng)濟開發(fā)區(qū)中學數(shù)學九年級第一學期期末學業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.將拋物線y=-2x2向左平移3個單位,再向下平移4個單位,所得拋物線為()A. B.C. D.2.如圖,將一個Rt△ABC形狀的楔子從木樁的底端點P處沿水平方向打入木樁底下,使木樁向上運動,已知楔子斜面的傾斜角為20°,若楔子沿水平方向前移8cm(如箭頭所示),則木樁上升了()A.8tan20° B. C.8sin20° D.8cos20°3.如圖,點A是以BC為直徑的半圓的中點,連接AB,點D是直徑BC上一點,連接AD,分別過點B、點C向AD作垂線,垂足為E和F,其中,EF=2,CF=6,BE=8,則AB的長是()A.4 B.6 C.8 D.104.如圖,⊙O是△ABC的外接圓,已知AD平分∠BAC交⊙O于點D,AD=5,BD=2,則DE的長為()A. B. C. D.5.已知關于x的方程x2+bx+a=0有一個根是﹣a(a≠0),則a﹣b的值為()A.a(chǎn)﹣b=1 B.a(chǎn)﹣b=﹣1 C.a(chǎn)﹣b=0 D.a(chǎn)﹣b=±16.如圖,四邊形是的內(nèi)接四邊形,與的延長線交于點,與的延長線交于點,,,則的度數(shù)為()A.38° B.48° C.58° D.68°7.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.8.用直角三角板檢查半圓形的工件,下列工件合格的是()A. B.C. D.9.如圖,等邊△ABC中,點D、E、F分別是AB、AC、BC中點,點M在CB的延長線上,△DMN為等邊三角形,且EN經(jīng)過F點.下列結論:①EN=MF②MB=FN③MP·DP=NP·FP④MB·BP=PF·FC,正確的結論有()A.1個 B.2個 C.3個 D.4個10.如圖,點I是△ABC的內(nèi)心,∠BIC=130°,則∠BAC=()A.60° B.65° C.70° D.80°二、填空題(每小題3分,共24分)11.如圖,在中,點在邊上,連接并延長交的延長線于點,若,則__________.12.拋物線的對稱軸過點,點與拋物線的頂點之間的距離為,拋物線的表達式為______.13.如圖是拋物線圖象的一部分,拋物線的頂點坐標為,與軸的一個交點為,點和點均在直線上.①;②;③拋物線與軸的另一個交點時;④方程有兩個不相等的實數(shù)根;⑤;⑥不等式的解集為.上述六個結論中,其中正確的結論是_____________.(填寫序號即可)14.如圖,在中,,以點A為圓心,2為半徑的與BC相切于點D,交AB于點E,交AC于點F,點P是上的一點,且,則圖中陰影部分的面積為______.15.某班級中有男生和女生各若干,如果隨機抽取1人,抽到男生的概率是,那么抽到女生的概率是_____.16.在一個不透明的盒子中裝有8個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,它是白球的概率為,則黃球的個數(shù)為______.17.如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為.18.關于x的一元二次方程x2﹣mx﹣2=0的一個根為﹣1,則m的值為________.三、解答題(共66分)19.(10分)李師傅駕駛出租車勻速地從西安市送客到咸陽國際機場,全程約,設小汽車的行駛時間為(單位:),行駛速度為(單位:),且全程速度限定為不超過.(1)求關于的函數(shù)表達式;(2)李師傅上午點駕駛小汽車從西安市出發(fā).需在分鐘后將乘客送達咸陽國際機場,求小汽車行駛速度.20.(6分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點D,CD=3,BD=4,則點D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點D,過點D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關系,并說明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內(nèi)接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內(nèi)心與外心之間的距離為.21.(6分)如圖是一副撲克牌中的三張牌,將它們正面向下洗均勻,甲同學從中隨機抽取一張牌后放回,乙同學再從中隨機抽取一張牌,用樹狀圖(或列表)的方法,求抽出的兩張牌中,牌面上的數(shù)字都是偶數(shù)的概率.22.(8分)如圖,點在軸正半軸上,點是反比例函數(shù)圖象上的一點,且.過點作軸交反比例函數(shù)圖象于點.(1)求反比例函數(shù)的表達式;(2)求點的坐標.23.(8分)因粵港澳大灣區(qū)和中國特色社會主義先行示范區(qū)的雙重利好,深圳已成為國內(nèi)外游客最喜歡的旅游目的地城市之一.深圳著名旅游“網(wǎng)紅打卡地”東部華僑城景區(qū)在2018年春節(jié)長假期間,共接待游客達20萬人次,預計在2020年春節(jié)長假期間,將接待游客達28.8萬人次.(1)求東部華僑城景區(qū)2018至2020年春節(jié)長假期間接待游客人次的年平均增長率;(2)東部華僑城景區(qū)一奶茶店銷售一款奶茶,每杯成本價為6元,根據(jù)銷售經(jīng)驗,在旅游旺季,若每杯定價25元,則平均每天可銷售300杯,若每杯價格降低1元,則平均每天可多銷售30杯.2020年春節(jié)期間,店家決定進行降價促銷活動,則當每杯售價定為多少元時,既能讓顧客獲得最大優(yōu)惠,又可讓店家在此款奶茶實現(xiàn)平均每天6300元的利潤額?24.(8分)受全國生豬產(chǎn)能下降的影響,豬肉價格持續(xù)上漲,某超市豬肉8月份平均價格為25元/斤,10月份平均價格為36元/斤,求該超市豬肉價格平均每月增長的百分率.25.(10分)如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進30海里到達B點,此時,測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結果保留根號).26.(10分)如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.(1)求證:AP是⊙O的切線;(2)求PD的長.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:把拋物線y=-2x2先向左平移3個單位,再向下平移4個單位,所得的拋物線的解析式是y=-2(x+3)2-4,故選:B.本題主要考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.2、A【解析】根據(jù)已知,運用直角三角形和三角函數(shù)得到上升的高度為:8tan20°.【詳解】設木樁上升了h米,∴由已知圖形可得:tan20°=,∴木樁上升的高度h=8tan20°故選B.3、D【分析】延長BE交于點M,連接CM,AC,依據(jù)直徑所對的圓周角是90度,及等弧對等弦,得到直角三角形BMC和等腰直角三角形BAC,依據(jù)等腰直角三角形三邊關系,知道要求AB只要求直徑BC,直徑BC可以在直角三角形BMC中運用勾股定理求,只需要求出BM和CM,依據(jù)三個內(nèi)角是直角的四邊形是矩形,可以得到四邊形EFCM是矩形,從而得到CM和EM的長度,再用BE+EM即得BM,此題得解.【詳解】解:延長BE交于點M,連接CM,AC,∵BC為直徑,∴,又∵由得:,∴四邊形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵點A是以BC為直徑的半圓的中點,∴AB=AC,又∵,∴,∴AB=10.故選:D.本題考查了圓周角定理的推理——直徑所對的圓周角是90度,矩形的判定與性質,勾股定理,解題的關鍵是構造兩個直角三角形,將已知和待求用勾股定理建立等式.4、D【分析】根據(jù)AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所對的圓周角相等,求證△ABD△BED,利用其對應邊成比例可得,然后將已知數(shù)值代入即可求出DE的長.【詳解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所對的圓周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故選D.本題考查圓周角定理以及相似三角形的判定與性質,根據(jù)其定理進行分析.5、B【分析】把x=﹣a代入方程得到一個二元二次方程,方程的兩邊都除以a,即可得出答案.【詳解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴兩邊都除以a得:a﹣b+1=0,即a﹣b=﹣1,故選:B.此題考查一元二次方程的解,是方程的解即可代入方程求其他未知數(shù)的值或是代數(shù)式的值.6、A【分析】根據(jù)三角形的外角性質求出,然后根據(jù)圓內(nèi)接四邊形的性質和三角形內(nèi)角和定理計算即可.【詳解】解:=故選A本題考查了圓周角定理及其推論.7、B【解析】根據(jù)中心對稱圖形的概念:如果一個圖形繞某一個點旋轉180°后能與它自身重合,我們就把這個圖形叫做中心對稱圖形,逐一判斷即可.【詳解】A.不是中心對稱圖形,故錯誤;B.是中心對稱圖形,故正確;C.不是中心對稱圖形,故錯誤;D.不是中心對稱圖形,故錯誤;故選:B.本題主要考查中心對稱圖形,掌握中心對稱圖形的概念是解題的關鍵.8、C【分析】根據(jù)直徑所對的圓周角是直角逐一判斷即可.【詳解】解:A、直角未在工件上,故該工件不是半圓,不合格,故A錯誤;B、直角邊未落在工件上,故該工件不是半圓,不合格,故B錯誤;C、直角及直角邊均落在工件上,故該工件是半圓,合格,故C正確;D、直角邊未落在工件上,故該工件不是半圓,不合格,故D錯誤,故答案為:C.本題考查了直徑所對的圓周角是直角的實際應用,熟知直徑所對的圓周角是直角是解題的關鍵.9、C【分析】①連接DE、DF,根據(jù)等邊三角形的性質得到∠MDF=∠NDE,證明△DMF≌△DNE,根據(jù)全等三角形的性質證明;②根據(jù)①的結論結合點D、E、F分別是AB、AC、BC中點,即可得證;③根據(jù)題目中的條件易證得,即可得證;④根據(jù)題目中的條件易證得,再則等量代換,即可得證.【詳解】連接,
∵和為等邊三角形,
∴,,
∵點分別為邊的中點,
∴是等邊三角形,∴,,
∵∴,
在和中,,
∴,
∴,故①正確;∵點分別為等邊三角形三邊的中點,
∴四邊形為菱形,∴,∵,∴,故②正確;∵點分別為等邊三角形三邊的中點,∴∥,∴,∵為等邊三角形,∴,又∵,∴,∴,∴,故③錯誤;∵點分別為等邊三角形三邊的中點,∴∥,,∴,∴,由②得,∴,∴,故④正確;綜上:①②④共3個正確.故選:C本題考查的是等邊三角形的性質、全等三角形的判定和性質、相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理結合等量代換是解題的關鍵.10、D【分析】根據(jù)三角形的內(nèi)接圓得到∠ABC=2∠IBC,∠ACB=2∠ICB,根據(jù)三角形的內(nèi)角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度數(shù)即可;【詳解】解:∵點I是△ABC的內(nèi)心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故選D.本題主要考查了三角形的內(nèi)心,掌握三角形的內(nèi)心的性質是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)相似三角形的判定與性質、平行四邊形的性質,進而證明,得出線段的比例,即可得出答案【詳解】在中,∴AD∥BC,∠DAE=∠CFE,∠ADE=∠FCE,∴△ADE∽△FCE∵DE=2EC,∴AD=2CF,在中,∵AD=BC,等量代換得:BC=2CF∴2:1本題考查了相似三角形的判定與性質以及平行四邊形的性質,數(shù)形結合是解題的關鍵.12、y=-x2-2x或y=-x2-2x+8【分析】根據(jù)題意確定出拋物線頂點坐標,進而確定出m與n的值,即可確定出拋物線解析式.【詳解】∵拋物線的對稱軸過點,∴設頂點坐標為:根據(jù)題意得:,解得:或拋物線的頂點坐標為(-1,1)或(-1,9),可得:,或,解得:,或,
則該拋物線解析式為:或,
故答案為:或.本題考查了待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的性質,熟練掌握待定系數(shù)法是解本題的關鍵.13、①④【分析】①由對稱軸x=1判斷;②根據(jù)圖象確定a、b、c的符號;③根據(jù)對稱軸以及B點坐標,通過對稱性得出結果;③根據(jù)的判別式的符號確定;④比較x=1時得出y1的值與x=4時得出y2值的大小即可;⑤由圖象得出,拋物線總在直線的下面,即y2>y1時x的取值范圍即可.【詳解】解:①因為拋物線的頂點坐標A(1,3),所以對稱軸為:x=1,則-=1,2a+b=0,故①正確;
②∵拋物線開口向下,∴a<0,∵對稱軸在y軸右側,∴b>0,∵拋物線與y軸交于正半軸,∴c>0,∴abc<0,故②不正確;
③∵拋物線對稱軸為x=1,拋物線與x軸的交點B的坐標為(4,0),∴根據(jù)對稱性可得,拋物線與x軸的另一個交點坐標為(-2,0),故③不正確;④∵拋物線與x軸有兩個交點,∴b2-4ac>0,∴的判別式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正確;⑤當x=-1時,y1=a-b+c>0;當x=4時,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正確;
⑥由圖象得:的解集為x<1或x>4;故⑥不正確;
則其中正確的有:①④.
故答案為:①④.本題選項較多,比較容易出錯,因此要認真理解題意,明確以下幾點是關鍵:①通常2a+b的值都是利用拋物線的對稱軸來確定;②拋物線與x軸的交點個數(shù)確定其△的值,即b2-4ac的值:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點;③知道對稱軸和拋物線的一個交點,利用對稱性可以求與x軸的另一交點.14、【分析】圖中陰影部分的面積=S△ABC-S扇形AEF.由圓周角定理推知∠BAC=90°.【詳解】解:連接AD,在⊙A中,因為∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S陰影=4-故答案為:本題考查了切線的性質與扇形面積的計算.求陰影部分的面積時,采用了“分割法”.15、【分析】由于抽到男生的概率與抽到女生的概率之和為1,據(jù)此即可求出抽到女生的概率.【詳解】解:∵抽到男生的概率是,∴抽到女生的概率是1-=.故答案為:.此題考查的是求概率問題,掌握抽到男生和抽到女生的概率之和等于1是解決此題的關鍵.16、1【解析】首先設黃球的個數(shù)為x個,然后根據(jù)概率公式列方程即可求得答案.解:設黃球的個數(shù)為x個,根據(jù)題意得:=2/3解得:x=1.∴黃球的個數(shù)為1.17、12﹣4【詳解】試題分析:如圖所示:連接AC,BD交于點E,連接DF,F(xiàn)M,MN,DN,∵將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形,∠BAD=60°,AB=2,∴AC⊥BD,四邊形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴則圖中陰影部分的面積為:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案為12﹣4.考點:1、旋轉的性質;2、菱形的性質.18、1【解析】試題分析:把x=-1代入方程得:(-1)2+m﹣2=0,解得:m=1.故答案為:1.三、解答題(共66分)19、(1);(2)【分析】(1)根據(jù)距離=速度×時間即可得關于的函數(shù)表達式,根據(jù)全程速度限定為不超過可確定t的取值范圍;(2)把t=0.5代入(1)中關系式,即可求出速度v的值.【詳解】∵全程約,小汽車的行駛時間為,行駛速度為,∴vt=40,∵全程速度限定為不超過,全程約,∴t≥0.4,∴v關于的函數(shù)表達式為:.(2)∵需在分鐘后將乘客送達咸陽國際機場,30分鐘=0.5小時,∴v==80,∴小汽車行駛速度是.此題考查反比例函數(shù)的實際運用,掌握路程、時間、速度三者之間的關系是解題關鍵.20、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求,(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點,由切線長定理可得,所以ON=5-4=1由面積法易得內(nèi)切圓半徑為2【詳解】解:(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點,由切線長定理可得,所以ON=5-4=1由面積法易得內(nèi)切圓半徑為2∴,故答案:(1)(2)AB+BC=2BE(3)本題主要考查角平分線、三角形全等及三角形內(nèi)心與外心的綜合,難度較大,需靈活運用各知識求解.21、【解析】畫樹狀圖展示所有9種等可能的結果數(shù),再找出兩次抽取的牌上的數(shù)字都是偶數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數(shù),其中兩次抽取的牌上的數(shù)字都是偶數(shù)的結果數(shù)為2,所以兩次抽取的牌上的數(shù)字都是偶數(shù)的概率==.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.22、(1);(2)【分析】(1)設反比例函數(shù)的表達式為,將點B的坐標代入即可;(2)過點作于點,根據(jù)點B的坐標即可得出,,然后根據(jù),即可求出AD,從而求出AO的長即點C的縱坐標,代入解析式,即可求出點的坐標.【詳解】解:(1)設反比例函數(shù)的表達式為,∵點在反比例函數(shù)圖象上,∴.解得.∴反比例函數(shù)的表達式為.(2)過點作于點.∵點的坐標為,∴,.在中,,∴.∴.∵軸,∴點的縱坐標為6.將代入,得.∴點的縱坐標為.此題考查的是反比例函數(shù)與圖形的綜合題,掌握用待定系數(shù)法求反比例函數(shù)的解析式和利用銳角三角函數(shù)解直角三角形是解決此題的關鍵.23、(1)22%;(2)22元.【分析】(1)設年平均增長率為x,根據(jù)東部華僑城景區(qū)在238年春節(jié)長假期間,共接待游客達22萬人次,預計在2222年春節(jié)長假期間,將接待游客達1.8萬人次.列出方程求解即可;(2)設當每杯售價定為y元時,店家在此款奶茶實現(xiàn)平均每天6322元的利潤額,由題意得關于y的方程,解方程并對方程的解作出取舍即可.【詳解】解:(1)設年平均增長率為x,由題意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增長率為22%;(2)設當每杯售價定為y元時,店家在此款奶茶實現(xiàn)平均每天6322元的利潤額,由題意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422=2,解得:y1=22,y2=3.∵讓顧客獲得最大優(yōu)惠,∴y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 副校長競聘演講稿:以責任為基以實干為徑
- 步道圖案施工方案(3篇)
- 河道施工方案變更(3篇)
- 盤扣腳手架專項施工方案
- 清洗穹頂施工方案(3篇)
- 礦區(qū)掘進施工方案(3篇)
- pvc埋地管施工方案
- 群眾安全活動策劃方案(3篇)
- 花園裝扮活動策劃方案(3篇)
- 衣櫥換季活動策劃方案(3篇)
- 2026中國國際航空招聘面試題及答案
- (2025年)工會考試附有答案
- 2026年國家電投集團貴州金元股份有限公司招聘備考題庫完整參考答案詳解
- 復工復產(chǎn)安全知識試題及答案
- 中燃魯西經(jīng)管集團招聘筆試題庫2026
- 資產(chǎn)接收協(xié)議書模板
- 華潤燃氣2026屆校園招聘“菁英計劃·管培生”全面開啟備考考試題庫及答案解析
- 數(shù)據(jù)中心合作運營方案
- 印鐵涂料基礎知識
- GB/T 12789.1-1991核反應堆儀表準則第一部分:一般原則
- GB/T 12719-2021礦區(qū)水文地質工程地質勘查規(guī)范
評論
0/150
提交評論