衢州市七年級下冊末數(shù)學試卷及答案_第1頁
衢州市七年級下冊末數(shù)學試卷及答案_第2頁
衢州市七年級下冊末數(shù)學試卷及答案_第3頁
衢州市七年級下冊末數(shù)學試卷及答案_第4頁
衢州市七年級下冊末數(shù)學試卷及答案_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.如圖,A點的坐標為(0,3),B點的坐標為(﹣3,0),D為x軸上的一個動點且不與B,O重合,將線段AD繞點A逆時針旋轉90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點M.(1)如圖,當點D在線段OB的延長線上時,①若D點的坐標為(﹣5,0),求點E的坐標.②求證:M為BE的中點.③探究:若在點D運動的過程中,的值是否是定值?如果是,請求出這個定值;如果不是,請說明理由.(2)請直接寫出三條線段AO,DO,AM之間的數(shù)量關系(不需要說明理由).解析:(1)①E(3,﹣2)②見解析;③,理由見解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①過點E作EH⊥y軸于H.證明△DOA≌△AHE(AAS)可得結論.②證明△BOM≌△EHM(AAS)可得結論.③是定值,證明△BOM≌△EHM可得結論.(2)根據(jù)點D在點B左側和右側分類討論,分別畫出對應的圖形,根據(jù)全等三角形的判定及性質即可分別求出結論.【詳解】解:(1)①過點E作EH⊥y軸于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y軸,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③結論:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)結論:OA+OD=2AM或OA﹣OD=2AM.理由:當點D在點B左側時,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.當點D在點B右側時,過點E作EH⊥y軸于點H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.綜上:OA+OD=2AM或OA﹣OD=2AM.【點睛】此題考查的是全等三角形的判定及性質、旋轉的性質和平面直角坐標系,掌握全等三角形的判定及性質、旋轉的性質和點的坐標與線段長度的關系是解決此題的關鍵.2.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設,且.(1)________,________;直線與的位置關系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關系?并證明你的結論.(3)若將圖中的射線繞著端點逆時針方向旋轉(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質,熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關鍵.3.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關系為:;(不需要證明);如圖2中,、、的數(shù)量關系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作輔助線是解題的關鍵.4.直線AB∥CD,點P為平面內(nèi)一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC的度數(shù);(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關系,并說明理由;(3)如圖③,點P在直線CD下方,當∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數(shù)量關系,并說明理由.解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是作出平行線構造內(nèi)錯角相等計算.5.汛期即將來臨,防汛指揮部在某水域一危險地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時針旋轉至便立即回轉,燈射出的光束自順時針旋轉至便立即回轉,兩燈不停交叉照射巡視.若燈射出的光束轉動的速度是/秒,燈射出的光束轉動的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時轉動,在燈射出的光束到達之前,若兩燈射出的光束交于點,過作交于點,若,求的度數(shù);(3)若燈射線先轉動30秒,燈射出的光束才開始轉動,在燈射出的光束到達之前,燈轉動幾秒,兩燈的光束互相平行?解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個時間段內(nèi)A可以轉3次,分情況討論.【詳解】解:(1).又,.,;(2)設燈轉動時間為秒,如圖,作,而,,,,,,(3)設燈轉動秒,兩燈的光束互相平行.依題意得①當時,兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當時,兩光束平行,所以兩河岸平行,所以所以,,解得;③當時,圖大概如①所示,解得(不合題意)綜上所述,當秒或82.5秒時,兩燈的光束互相平行.【點睛】這道題考察的是平行線的性質和一元一次方程的應用.根據(jù)平行線的性質找到對應角列出方程是解題的關鍵.6.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過P作PE∥AB,通過平行線性質,可得∠APC=∠APE+∠CPE=50°+60°=110°.問題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點M、N,點P在直線I上運動,當點P在線段MN上運動時(不與點M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關系并說明理由;(2)在(1)的條件下,如果點P在線段MN或NM的延長線上運動時.請直接寫出∠APC、α、B之間的數(shù)量關系;(3)如圖3,AB∥CD,點P是AB、CD之間的一點(點P在點A、C右側),連接PA、PC,∠BAP和∠DCP的平分線交于點Q.若∠APC=116°,請結合(2)中的規(guī)律,求∠AQC的度數(shù).解析:(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點P作PE∥AB,根據(jù)平行線的判定與性質即可求解;(2)分點P在線段MN或NM的延長線上運動兩種情況,根據(jù)平行線的判定與性質及角的和差即可求解;(3)過點P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質及角的和差即可求解.【詳解】解:(1)如圖2,過點P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點P在線段MN的延長線上運動時,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點P在線段NM的延長線上運動時,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過點P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點睛】此題考查了平行線的判定與性質,添加輔助線將兩條平行線相關的角聯(lián)系到一起是解題的關鍵.7.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點,點為上一點,連接,若的平分線交線段于點,連接,若,過點作交的延長線于點,且,求的度數(shù).解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質及角平分線的定義可推出;設,根據(jù)角的和差可得出,結合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質,即可得出答案.【詳解】(1)證明:;(2)過點E作,延長DC至Q,過點M作,,,AF平分FH平分設,.【點睛】本題考查了平行線的判定及性質,角平分線的定義,能靈活根據(jù)平行線的性質和判定進行推理是解此題的關鍵.8.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.解析:(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結論;(3)過點作,延長至點,先根據(jù)平行線的性質可得,,從而可得,再根據(jù)角平分線的定義、結合(2)的結論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質是解題關鍵.9.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接寫出點A、B的坐標;(2)點C為x軸負半軸上一點滿足S△ABC=15.①如圖1,平移直線AB經(jīng)過點C,交y軸于點E,求點E的坐標;②如圖2,若點F(m,10)滿足S△ACF=10,求m.(3)如圖3,D為x軸上B點右側的點,把點A沿y軸負半軸方向平移,過點A作x軸的平行線l,在直線l上取兩點G、H(點H在點G右側),滿足HB=8,GD=6.當點A平移到某一位置時,四邊形BDHG的面積有最大值,直接寫出面積的最大值.解析:(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根據(jù)二次根式和偶次冪的非負性得出a,b解答即可;(2)①根據(jù)三角形的面積公式得出點C的坐標,根據(jù)平行線的性質解答即可;②延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,根據(jù)三角形面積公式解答即可;(3)平移GH到DM,連接HM,根據(jù)三角形面積公式解答即可.【詳解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①連接BE,如圖1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴點F在過點G(0,10)且平行于x軸的直線l上,延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,則M(a,0),如圖2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,連接HM,則GD∥HM,GD=HM,如圖3,四邊形BDHG的面積=△BHM的面積,當BH⊥HM時,△BHM的面積最大,其最大值=.【點睛】本題主要考查圖形與坐標及平移的性質,熟練掌握圖形與坐標及平移的性質是解題的關鍵.10.如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).(1)則A點的坐標為;點C的坐標為,D點的坐標為.(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結束.設運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關系,并說明理由.解析:(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對值和算術平方根的非負性,求得a,b的值,得出點A,C的坐標,再運用中點公式求出點D的坐標;(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過點H作HP∥AC交x軸于點P,先證明OG∥AC,再根據(jù)角的和差關系以及平行線性質,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設,為線段的中點.,,,故答案為:,,;(2)存在,.由條件可知:點從點運動到點需要時間為2秒,點從點運動到點需要時間2秒,,點在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點作交軸于點,則,,,,∴.【點睛】本題考查了平行線的性質,三角形面積,非負數(shù)的性質,中點坐標公式等,是一道三角形綜合題,解題關鍵是學會添加輔助線,運用轉化的思想思考問題.11.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關系?并說明理由;(3)利用(2)的結論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質,角平分線的定義,熟記性質與概念是解題的關鍵,此類題目,難點在于過拐點作平行線.12.對于平面直角坐標系xOy中的圖形G和圖形G上的任意點P(x,y),給出如下定義:將點P(x,y)平移到P'(x+t,y﹣t)稱為將點P進行“t型平移”,點P'稱為將點P進行“t型平移”的對應點;將圖形G上的所有點進行“t型平移”稱為將圖形G進行“t型平移”.例如,將點P(x,y)平移到P'(x+1,y﹣1)稱為將點P進行“l(fā)型平移”,將點P(x,y)平移到P'(x﹣1,y+1)稱為將點P進行“﹣l型平移”.已知點A(2,1)和點B(4,1).(1)將點A(2,1)進行“l(fā)型平移”后的對應點A'的坐標為.(2)①將線段AB進行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是.②若線段AB進行“t型平移”后與坐標軸有公共點,則t的取值范圍是.(3)已知點C(6,1),D(8,﹣1),點M是線段CD上的一個動點,將點B進行“t型平移”后得到的對應點為B',當t的取值范圍是時,B'M的最小值保持不變.解析:(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當B′在線段B′B″上時,B'M的最小值保持不變,最小值為.【詳解】(1)將點A(2,1)進行“l(fā)型平移”后的對應點A'的坐標為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是P1,故答案為:P1;②若線段AB進行“t型平移”后與坐標軸有公共點,則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當B′在線段B′B″上時,B'M的最小值保持不變,最小值為,此時1≤t≤3.故答案為:1≤t≤3.【點睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識,解題的關鍵理解題意,靈活運用所學知識解決問題,學會利用圖象法解決問題,屬于中考創(chuàng)新題型.13.如圖,數(shù)軸上兩點A、B對應的數(shù)分別是﹣1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)﹣3,0,2.5是連動數(shù)的是;(2)關于x的方程2x﹣m=x+1的解滿足是連動數(shù),求m的取值范圍;(3)當不等式組的解集中恰好有4個解是連動整數(shù)時,求a的取值范圍.解析:(1)﹣3,2.5;(2)﹣4<m<﹣2或0<m<2;(3)1≤a<2.【分析】(1)根據(jù)連動數(shù)的定義逐一判斷即得答案;(2)先求得方程的解,再根據(jù)連動數(shù)的定義得出相應的不等式組,解不等式組即可求出結果;(3)先解不等式組中的每個不等式,再根據(jù)連動整數(shù)的概念得到關于a的不等式組,解不等式組即可求得答案.【詳解】解:(1)設點P表示的數(shù)是x,則,若點Q表示的數(shù)是﹣3,由可得,解得:x=﹣1或﹣5,所以﹣3是連動數(shù);若點Q表示的數(shù)是0,由可得,解得:x=2或﹣2,所以0不是連動數(shù);若點Q表示的數(shù)是2.5,由可得,解得:x=﹣0.5或4.5,所以2.5是連動數(shù);所以﹣3,0,2.5是連動數(shù)的是﹣3,2.5,故答案為:﹣3,2.5;(2)解關于x的方程2x﹣m=x+1得:x=m+1,∵關于x的方程2x﹣m=x+1的解滿足是連動數(shù),∴或,解得:﹣4<m<﹣2或0<m<2;故答案為:﹣4<m<﹣2或0<m<2;(3),解不等式①,得x>﹣3,解不等式②,得x≤1+a,∵不等式組的解集中恰好有4個解是連動整數(shù),∴四個連動整數(shù)解為﹣2,﹣1,1,2,∴2≤1+a<3,解得:1≤a<2,∴a的取值范圍是1≤a<2.【點睛】本題是新定義試題,以數(shù)軸為載體,主要考查了一元一次不等式組,正確理解連動數(shù)與連動整數(shù)、列出相應的不等式組是解題的關鍵.14.學校將20××年入學的學生按入學年份、年級、班級、班內(nèi)序號的順序給每一位學生編號,如2015年入學的8年級3班的46號學生的編號為15080346.張山同學模仿二維碼的方式給學生編號設計了一套身份識別系統(tǒng),在5×5的正方形風格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.我們把從上往下數(shù)第i行、從左往右數(shù)第j列表示的數(shù)記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數(shù)字,A5表示編號的個位數(shù)字.①圖1是張山同學的身份識別圖案,請直接寫出張山同學的編號;②請在圖2中畫出2018年入學的9年級5班的39號同學的身份識別圖案;(2)張山同學又設計了一套信息加密系統(tǒng),其中A1表示入學年份加8,A2表示所在年級的數(shù)減6再加上所在班級的數(shù),A3表示所在年級的數(shù)乘2后減3再減所在班級的數(shù),將編號(班內(nèi)序號)的末兩位單列出來,作為一個兩位數(shù),個位與十位數(shù)字對換后再加2,所得結果的十位數(shù)字用A4表示、個位數(shù)字用A5表示.例如:2018年9年級5班的39號同學,其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學加密后的身份識別圖案,請求出李思同學的編號.解析:(1)①20070618;②見解析;(2)16080413【分析】(1)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設李思同學在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據(jù)加密規(guī)則,原編號的末兩位數(shù)為13.綜上,李思同學的編號是16080413.【點睛】本題主要考查了實數(shù)與圖形,解二元一次方程組,截圖的關鍵在于能夠準確讀懂題意.15.一列快車長70米,慢車長80米,若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,求兩車每秒鐘各行多少米?解析:快車每秒行米,慢車每秒行米.【分析】設快車每秒行米,慢車每秒行米,根據(jù)若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,列出方程組,解方程組即可求得.【詳解】設快車每秒行米,慢車每秒行米,根據(jù)題意得,解得答:快車每秒行米,慢車每秒行米.【點睛】本題考查了二元一次方程組的應用,根據(jù)題意列出方程組是解題的關鍵.16.某校規(guī)劃在一塊長AD為18m、寬AB為13m的長方形場地ABCD上,設計分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設計三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問通道的寬是多少?解析:1【分析】利用AM:AN=8:9,設通道的寬為xm,AM=8ym,則AN=9ym,進而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設通道的寬是xm,AM=8ym.因為AM∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點睛】本題考查了二元一次方程組的應用.17.我市某包裝生產(chǎn)企業(yè)承接了一批上海世博會的禮品盒制作業(yè)務,為了確保質量,該企業(yè)進行試生產(chǎn).他們購得規(guī)格是的標準板材作為原材料,每張標準板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖甲,(單位:)(1)列出方程(組),求出圖甲中a與b的值;(2)在試生產(chǎn)階段,若將30張標準板材用裁法一裁剪,4張標準板材用裁法二裁剪,再將得到的A型與B型板材做側面和底面,做成圖乙的豎式與橫式兩種禮品盒.①兩種裁法共產(chǎn)生A型板材________張,B型板材_______張;②已知①中的A型板材和B型板材恰好做成豎式有蓋禮品盒x個,橫式無蓋禮品盒的y個,求x、y的值.解析:(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由圖示利用板材的長列出關于a、b的二元一次方程組求解;(2)①根據(jù)已知和圖示計算出兩種裁法共產(chǎn)生A型板材和B型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的A、B兩種型號板材的張數(shù)列出關于x、y的二元一次方程組,然后求解即可.【詳解】解:(1)由題意得:,解得:,答:圖甲中與的值分別為:60、40;(2)①由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為:,所以兩種裁法共產(chǎn)生型板材為(張,由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為,,所以兩種裁法共產(chǎn)生型板材為(張,故答案為:64,38;②根據(jù)題意豎式有蓋禮品盒的個,橫式無蓋禮品盒的個,則型板材需要個,型板材需要個,所以,解得.【點睛】本題考查的知識點是二元一次方程組的應用,關鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關于x、y的二元一次方程組.18.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.請你解決下列問題:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范圍是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.解析:(1)4,﹣7;(2)3≤x<4;(3);(4)或或或【分析】(1)根據(jù)題目中的定義,[x]表示不超過x的最大整數(shù),求出結果即可;(2)根據(jù)定義,是大于等于3小于4的數(shù);(3)由得到,求出的取值范圍,再由是整數(shù)即可得到的值;(4)由和得,設是整數(shù),即可求出的取值范圍,然后分類討論求出的值即可.【詳解】解:(1)∵不超過4.8的最大整數(shù)是4,∴,∵不超過的最大整數(shù)是,∴故答案是:4,;(2)∵,∴是大于等于3小于4的數(shù),即;(3)∵,∴,解得,∵是整數(shù),∴;(4)∵,∴,∵,∴,即,∵(是整數(shù)),∴,∵,∴,解得,當時,,,當時,,,當時,,,當時,,,綜上:的值為或或或.【點睛】本題考查新定義問題,不等式組的運用,解題的關鍵是理解題目中的意義,列出不等式組進行求解.19.在平面直角坐標系xOy中,已知點M(a,b).如果存在點N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點N為點M的“控變點”.(1)點A(﹣1,2)的“控變點”B的坐標為;(2)已知點C(m,﹣1)的“控變點”D的坐標為(4,n),求m,n的值;(3)長方形EFGH的頂點坐標分別為(1,1),(5,1),(5,4),(1,4).如果點P(x,﹣2x)的“控變點”Q在長方形EFGH的內(nèi)部,直接寫出x的取值范圍.解析:(1);(2)或;(3)或.【分析】(1)根據(jù)“控變點”的定義、絕對值運算法則即可得;(2)根據(jù)“控變點”的定義、絕對值運算建立方程,解絕對值方程即可得;(3)先根據(jù)“控變點”的定義求出點的坐標,再根據(jù)“點在長方形的內(nèi)部”建立不等式組,解不等式組、化簡絕對值即可得.【詳解】解:(1),,的“控變點”的坐標為,故答案為:;(2)由題意得:,解得或,即或;(3)在平面直角坐標系中,畫出長方形如下所示:由題意得:,即,要使點在長方形的內(nèi)部,則,解得,即或.【點睛】本題考查了坐標與圖形、絕對值運算、一元一次不等式組的應用,掌握理解“控變點”的定義是解題關鍵.20.在平面直角坐標系中,點,,的坐標分別為,,,且,滿足方程為二元一次方程.(1)求,的坐標.(2)若點為軸正半軸上的一個動點.①如圖1,當時,與的平分線交于點,求的度數(shù);②如圖2,連接,交軸于點.若成立.設動點的坐標為,求的取值范圍.解析:(1)點的坐標為,點的坐標為;(2)①45°;②【分析】(1)根據(jù)可得,,,,即可求得a、c的值,坐標可求;2)①作PH∥AD,根據(jù)角平分線的定義、平行線的性質計算,得到答案;②連接AB,交y軸于F,根據(jù)點的坐標特征分別求出S△ABC、S△ABD,根據(jù)題意列出不等式,解不等式即可.【詳解】解:(1)由題意得,,,,解得,,,則點的坐標為,點的坐標為;(2)①如圖1,作,∵,∴,∵,∴,∵,∴,∴,∵與的平分線交于點,∴,,∴,∵,,∴,,∴;②連接,交軸于,∵,∴,即,∵,,,∴,過作軸的平行線,作、垂直,交于點、,,,由題意得,,解得,,∵點為軸正半軸上的一個動點,∴.【點睛】本題考查的是二元一次方程的定義、平行線的性質、坐標與圖形性質、三角形的面積計算,一元一次不等式,掌握平行線的性質、三角形面積公式是解題的關鍵.21.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設為線段上一動點,當時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當點在線段上運動時,作交于的平分線交于,當點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.解析:(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結合題意可設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進而可得出x=y,再結合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質,可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結論.【詳解】(1)由,可得和,解得∴A的坐標是(-2,0)、B的坐標是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論