麥肯錫-CEO在智能體時代的路線圖:目標、決策與影響+The+Change+Agent:Goals,+Decisions,+and+Implications+for+CEOs+in+the+Agentic+Age_第1頁
麥肯錫-CEO在智能體時代的路線圖:目標、決策與影響+The+Change+Agent:Goals,+Decisions,+and+Implications+for+CEOs+in+the+Agentic+Age_第2頁
麥肯錫-CEO在智能體時代的路線圖:目標、決策與影響+The+Change+Agent:Goals,+Decisions,+and+Implications+for+CEOs+in+the+Agentic+Age_第3頁
麥肯錫-CEO在智能體時代的路線圖:目標、決策與影響+The+Change+Agent:Goals,+Decisions,+and+Implications+for+CEOs+in+the+Agentic+Age_第4頁
麥肯錫-CEO在智能體時代的路線圖:目標、決策與影響+The+Change+Agent:Goals,+Decisions,+and+Implications+for+CEOs+in+the+Agentic+Age_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Mcsey

Quarterly

QuantumBlack,AIbyMcKinsey

Thechangeagent:Goals,

decisions,andimplications

forCEOsintheagenticage

CompaniesarefeelingagenticAIgrowingpains.Here’swhatCEOscandoto

movepastthemandpositiontheircompaniestosucceed.

ThisarticleisacollaborativeeffortbyAlexSingla,AlexanderSukharevsky,LariH?m?l?inen,OanaCheta,Olli

Salo,PallavJain,RaghavRaghunathan,SandraDurth,StéphaneBout,andVitoDiLeo,representingviewsfrom

QuantumBlack,AIbyMcKinsey;McKinseyTechnology;andMcKinsey’sPeople&OrganizationalPerformanceand

Technology,Media&TelecommunicationsPractices.

October2025

ExecutivesarefondofquotinghockeygreatWayneGretzky,whoiscreditedwithsaying:“I

skatetowherethepuckisgoingtobe,notwhereithasbeen.”Thisissoundbusinessadviceatonelevel.ButthatpuckismovingawholelotfasterthanitusedtoasagenticAIrapidlyevolves.

ThecalltomovefastermayseemtonedeafasCEOsandtheirseniorteamsstruggletosee

bottom-linevaluefromearlygenAIinvestments.DevelopingandscalinggenAIusecaseshaveprovenfrustratinglychallenging.SomeexecutivesremainunconvincedthatAIagentswillhaveasignificantimpact—atleastintheshortterm—andhavesteppedbackfromtheirinvestments.1

AsCEOsnavigatetheuncertainty,itisworthacknowledgingboththepaceandpotentialscopeofthechangethatishappening.

AIagents

—softwaresystemsbuiltwithgenAIthathavethe

abilitytoplan,act,remember,andlearntoachievepredefinedoutcomesautonomously—are

evolvingquicklyand,astheymature,couldcompletelychangehowcompaniesarerunandhowthey

generatevalue

(seesidebar“KeytrendsshapinggenAIandagents”).Infact,this“troughofdisillusionment”period,asJohnLovelockofGartnerrecentlycalledit,2isanopportunityfor

executivestojumpaheadoftheircompetitors

.

HowCEOsmanagethischange

willdeterminehowwelltheycancapturethebenefits.AlthoughAIagentsareintheirinfancy,early

lessonsandexperiences

highlightfourmindsetsandactionsthatcanpositionCEOstoprosper:

—Reimaginewhat’spossible.MuchofthethinkingaroundagenticAItodayisstillfocusedonautomatingbasictasksoraugmentingknowledge.Therealwin,however,willcomefrom

muchbolderaspirationsofrearchitectedworkflowsandorganizationsbuiltaroundagent-firstsystems.

—Actwithurgencyandstartthelearning.TherapidrateofimprovementofgenAI

agentsmeansthatawait-and-seeapproachispotentiallyahigh-riskmove(seesidebar“BreakthroughsingenAIandagents”).Earlypracticallearningsareinvaluableinquicklybuildingacompetitiveadvantageasthetechnologymatures.

—Tacklescaleandlong-termcompetitivenessissuesnow.Criticaldecisionsaround

technology,trust,governance,whattobuyversuswhattobuild,capabilities,andtalentareimportanttodriveawidertransformation.Whileyouexperiment,startformingyourstrategyanddevelopingscalingcapabilitiesassoonaspossiblesinceexecutionwilltakelongerthanexpectedduetotalentscarcityandorganizationalcomplexity.

—Turneveryoneintoanagentleader.Asagentsandagenticsystemstakeovermoreofthe

executionalwork,everyoneintheorganizationwillneedtodevelopagentleadershipand

supervisionskills.Theexecutiveteamespeciallyneedstorolemodelandchampionlearningandtheevolutionoftheirworkhabits.

Whilemuchisstillunknown,buildingabusinessfortheagenticagewillrequirea

fundamental

rewiring

ofhowthebusinessoperates,innovates,andprotectssourcesofvaluecreation.Thisarticle,however,willfocusonafewofthemostimportantelementsan

enterpriseCEO

shouldaddressrelatedtovalue,scale,andtalent.Wewilloutlinewhatahypotheticaltwo-yearagenticjourneymightlooklike,whatkindsofdecisionsCEOsshouldconsider,andwhatthebig

implicationscouldbeforhowcompaniesoperate.

1“Gartnerpredictsover40%ofagenticAIprojectswillbecanceledbyendof2027,”Gartner,June25,2025.

2“WelcometotheAItroughofdisillusionment,”Economist,May21,2025.

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage2

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage3

KeytrendsshapinggenAIandagents

AIagentsarebecomingmorehuman-likeinthekindsoftaskstheycandoandthewaypeopleinteractwiththem.ThesefeaturesdemocratizeAIinawayprior

technologieshaventandunderscore

agentspotentialtoaffectabroadsetofactivities.TheincreasingpossibilitiesofgenAIthefoundationalcapabilitythatenablesAIagentsarefueledbyfour

mutuallyreinforcingtrends:

Anaccelerationininnovationpace.

Onlytwonew-frontierlargelanguagemodels(LLMs)wereannouncedin

2020;1by2025,thenumberisinthe

dozens,evenhundreds,dependingoncountingmethodologies.2Similarly,

thenumberofnewlarge-scaleAI

modelshasgrownby167percent

peryearsince2020.3Thelengthof

tasksAIagentscando(withatleast

a50percentsuccessrate)hasbeendoublingeverysevenmonths.4Atthetimeofwriting,ithasbeenreported

thatAnthropicsClaudeOpus4can

completealmostasmuchworkasa

humancaninaday,whileamultiagent

systemoutperformedasingle-

agentClaudeOpus4bymorethan

90percent.5

Largegrowthinspendand

investments.Thecomputeusedto

trainstate-of-the-artmodelshasbeengrowingroughlyfourtofivetimes

peryear.6Thetopthreehyperscalerscollectivelyplantoinvestmorethan$250billionin2025onAIanddata

centers,7andin2023,businessesspentabout$15billionongenAIsolutions,representingroughly

2percentoftheglobalenterprisesoftwaremarket.8

Sharpgainsinmodeltrainingand

inferencingefficiency.Breakthroughsinarchitectureandoptimizationhave

driventrainingcostsdownsignificantlyforagivencapability.Theinference

costsforChatGPT3.5droppedmore

than280timesbetweenNovember

2022andOctober2024.9Thecostpermillioninputtokens,forexample,has

decreasedabouttentimes,fromabout

$36.00inMarch2023toabout$3.50inAugust2024.10Forsomemodels,thecostislessthan$1.00.11

Breakthroughsinmodelandsystem

capabilities.Newreasoningmodels

deploy“testtimecompute”thinking

duringinference(“system-2thinking”);standardizedtool-callinginterfaces,

suchasAnthropicsModelContext

Protocol(MCP),letmodelsinvoke

enterpriseAPIssafely;vastlylarger

andmorepreciseshort-andlong-

termmemorystructuresimprove

boththerecallbreadthandprecision;multiagentorchestrationframeworks(forexample,LangGraph,AutoGen)

enablespecializedagentstodelegate,monitor,andreconciletheirwork;

andearlyagent-to-agentprotocols

(forexample,A2A,createdbyGoogleandrecentlydonatedtotheLinux

Foundationtomaintainasanopen-sourceproject)pointtoafuture

whereagentsautonomouslydiscoverpeers,negotiateroles,andexecute

workflows.

1The2024AIIndexreport,StanfordUniversity,Human-CenteredArtificialIntelligence,2024.

2Forexample,seeAnthonyCardillo,“Best44largelanguagemodels(LLMs)in2025,”ExplodingTopics,August28,2025.

3BasedonEpochAIdata,ascitedinMaryMeeker,JaySimons,DaegwonChae,andAlexanderKrey,Trends–ArtificialIntelligence,Bond,May2025.

4“MeasuringAIabilitytocompletelongtasks,”Metr,March19,2025.

5MichaelNu?ez,“AnthropicovertakesOpenAI:ClaudeOpus4codessevenhoursnonstop,setsrecordSWE-BenchscoreandreshapesenterpriseAI,”VB,May22,2025;“Howwebuiltourmulti-agentresearchsystem,”Anthropic,June13,2025.

6JaimeSevilleandEduRoldán,“TrainingcomputeoffrontierAImodelsgrowsby45xperyear,”EpochAI,May28,2024.

7DanRomanoff,“IsAIinvestmentpoisedforgrowth?Toppicksandpromisingapplicationsfor2025,”Morningstar,May27,2025.

8JeremySchneider,TejasShah,andJoshanCherianAbraham,“

NavigatingthegenerativeAIdisruptioninsoftware

,”McKinsey,June5,2024.

9The2025AIIndexreport,StanfordUniversity,Human-CenteredArtificialIntelligence,2025.

10“Largelanguagemodels:Performancevs.cost,”MentorCruise,January13,2025.

11“APIpricing,”O(jiān)penAI,accessedonSeptember19,2025.

Areagentsworthit?

ClaimsaboutthevalueofAIagentspermeatetheinternet.Butsincethetechnologyisstillso

new,thoseclaimsarehardtoverify.

Earlyimplementations,however,suggestthereissignificantvalueatstake.Ourexperiencewith

modernizingtechnologyestates

indicatesthatharnessingAIagentscanacceleratetimelines40to

50percentandreducecostsmorethan40percentwhilealsoimprovingthequalityoftheoutputs.3

3

“AIforITmodernization:Faster,cheaper,better

,”McKinsey,December2,2024.

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage4

Inanothercase,aleadinguniversalbankfacedamajorchallengeindeliveringahighvolumeofITprojectstodrivebusinessoutcomeswhilemanagingsignificanttechnicaldebtandashortageofskilleddevelopers.Startingwithasmallteamofthreeengineers,itbuiltatechmodernizationagentfactorywith100agentssupervisedbyjustfivehumans.Theseagents,underhuman

oversight,executedtheentiremodernizationlifecycle—fromreverseengineeringtodesigningandbuildingnewapplications—cuttingtimeandlaborcostsbymorethan50percent.

OurexperienceindicatesthattheinitialusesofAIagentstosupportpeopleandautomatetaskscandrive3to5percentinannualproductivityimprovementsatthecompanylevel.Asteamsof

AIagentsbecomecapableofcarryingoutmorecomplexworkflows,growthcouldincreasebyasmuchas10percentormore.

Knowyouragents:From‘a(chǎn)genticlabor’to‘a(chǎn)genticengine’

Executivesstilltendtohavefixedandlimitednotionsofwhatagentsareandwhattheycando.Thisconfusioncanmakeitdifficultforthemtounderstandwhatdecisionsrelatedtorisk,investment,resourceallocation,andchangeareneeded.

Whileit’stemptingtothinkofagentsinhumanterms,amoreobjectiveapproachistoconsiderthemassoftwaresystemsthatcandoaspectrumofincreasinglycomplextasks(exhibit).Inourexperience,thisapproachsharpensthethinkingaroundwhatsortsoforganizationalchangesarenecessary.

Agenticlabor:Agentsastoolstohelpwithexistingwork

Agentictoolscancontributetoexistingworkbyfacilitatingbasictasksundertakenbyindividualsandbyautomatingworkflows.

Individualaugmentation.Thesetoolshelpautomate,speedup,orimprovetasksthatpeopletypicallydo.Manyofthetasksarefamiliar—draftingresearchnotes,summarizingmeetings,generatingcode,conductingresearch,orproposingcontractclauses.

Thesetoolswilllikelybecome,andalreadyare,inareaslikeprogramming,a“costofdoingbusiness”similartoemployeesusingemailandspreadsheets.

Studiesshow20to30percenthigherpersonalthroughputandsometimesmuchhigher

numbersinsingle-taskareas.However,broadhorizontaldeploymentsofagentictoolingacrossthebusinessrarelytranslateintosignificantbusinessimpact.Furthermore,usagetendstotailoff,andretentiondropssignificantlybeyondleadusersformanytools.

Drivingbroadadoptionofpersonalsupportagentsrequiresfamiliarchangemanagement

investments,suchasembeddingthetoolsinstandardoperatingprocedures,integrating

theexpectedoutputsandusagemonitoringintoperformancemanagementsystems,giving

employeespropertrainingtousethetools,andcommunicatingandrolemodelingthebenefits.Atthesametime,leadershipwillneedtodeterminehowtocapturetheincreasedproductivitygivenitsspreadacrossseveralsmalltasks,oftendonethroughbudgetingandlarge-scale

efficiencyefforts.

Taskandworkflowautomation.Thesecondcategoryfocusesonautomatingexistingprocesses,workflows,andtasksintheorganization.Anagenticexecutionlayeressentiallysitsontopof

existingprocessesandsystems(withsmallchangestothem).

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage5

Exhibit

Agenticsystemscanworkonincreasinglycomplextasksdependingonhowwellcompaniescanovercomesomekeyconstraints.

Agenticsystemsbasedonincreasingtaskcomplexity

Agentic

system

Individual

augmentation

Taskandworklowautomation

Functionalagenticworklows

Cross-functionalagenticsystems

De?nition

Agentshelpauto-

mateandimprovebasictasks

Automationofexist-ing,low-complexityworklows

Agenticteamsworkingonredesignedworklows

Agent-drivensystemsworkon

complexworklowsacrossfunctions,

withhigh-leveldecisioningcapabilities

Primary

Individual

Coste代ciency,

Improvementsine代ciency,

Fasterproduction,lowercostper

bene?ts

productivity

speed,compliance

speed,andcustomersatisfac-

tion;greaterscale;revenueuplift

transaction,highervaluepercustomer,acceleratedcross-functionalprocessing

Key

Highlearning

Executioncapacity

Capacitytoreimagineprocess-

Organizationalandoperatingmodel

constraints

curve,continuedadoption,

signi?cant

changemanage-mentburden

toautomateexistingtasksatvolumeandathighquality

es,engineeringadvancestomanageagentteamsatscale

redesign

McKinsey&Company

Majortechnologyplayersareintroducingfirst-generationagenticproductswhileanexplosionofnewcompaniesisbringingsolutionstomanyfunctionaldomains(forexample,customercare,financialreportingandmonitoring,programming,productdevelopment,andprocurement).

Inourstudies,earlydeploymentshavedelivered20to40percentfastercycletimesorlower

handlingcostsforrepetitive,transactionalwork.Incontactcenters,certaintypesofcalls

(forexample,transactionalhandlingofbalancechecksandaddresschanges)arealmostfully

automated.Embeddingagentictoolsintoworkflowsandestablishingacontinuousimprovementapproachisacoreenabler,butsimplygivingtoolstouserswon’twork.

Theimpedimenttovalue,however,isthatthesemoredomain-specificusecasesoperatein

isolationandrelyonothersystemsandsignificanthumaninterventiontoperform.Furthermore,whilemodelcapabilityimproves,companiesstrugglewithexecutioncapacitytoautomate

existingtasksatvolumeandathighquality.

Agenticengine:Agent-nativeworkflowsandoperatingmodel

Emergingagenticsystems,drivenbybreakthroughsallowingforteamsofagentstowork

together,offerthemostpromisingopportunitiestogeneratemajorvalue.Capturingthisvalue,

however,requiresrethinkingandredesigningworkflowstobeagent-first,eitherwithinafunction(forexample,customercare)oracrossthem(forexample,leadtoorder).

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage6

Functionalagenticworkflows.Inthiscase,domain-specificworkflows(forexample,financialplanningandreporting)areredesignedtotakeadvantageofteamsofAIagentsandagentic

processes.Thatmeansrethinkingtaskorder,mergingtasks,accessingnewdatasources,anddevelopingnewprocesses,suchasearlysensingandresolutionofissuesbeforetheyemerge.

Agent-nativesystemscaneliminatethefrequenthandoffsandfragmentedactivitiesthathampermanycurrentprocessesbecauseteamsofagentsareorchestratedtoseamlesslyoperate.

Specialistvendorsinhorizontalandverticalsoftwarespacesarebuildingandimplementingfull-stack,agent-nativeapplicationsforareassuchascustomercare,finance,supplychainplanning,andsoftwaremodernization.Deployedcorrectly,thesesystemscutend-to-endcycletime,

improveresolutiontimes,anddriveupcustomersatisfaction.Forcallcenterperformance,for

example,theestimatedimpactcouldbeanautomatedhandlingof60to80percentofincomingrequestswithacomparableorbettercustomersatisfactionscorethanforcurrentsystems(forexample,interactivevoiceresponseplusfirst-linesupport).4

Suchsystemswillrequireacombinationofengineering(forexample,integratingprobabilistic

modelswithmoreclassical,deterministicsoftware)anddomainexpertisetobothbuildthe

multiagentsystemsandredesigntherelatedorganizationandoperatingmodelswithsufficient

humanoversight.Itwillbecriticaltoinstillintheseagentsgovernancerules(forexample,accessrights,decisionrights,andqualitygates)fortargetedworkflows(forexample,procuretopay,

vendorcontracting,suppliercommunication,andpolicymanagement)toensurethatsupervisinghumansaren’tquicklyoverwhelmed.

Cross-functionalagenticsystems.Theseagent-firstsystemsworkoncomplexworkflows(suchasend-to-endcustomerjourneys)acrossfunctionsandhavehigh-leveldecisioningcapabilities.Consider,forexample,24/7fieldserviceoperationsagentsthatdispatchtechnicians,

reschedulevisits,andorderpartsautonomously;aninsuranceteamthatadjudicatesclaims;a

mortgagethatisapprovedandunderwritteninseconds;orafinancialcyclewithagentshandlingeverythingfromannualplanningtomonthlyreporting.

Theseagenticsystemscancreatemultidimensionalvalueintermsof,forexample,fastertimetomarket,lowercostpertransaction,fasterissueresolution,andincreasedrevenuethroughbetteroffertargeting.Earlypilotsusingexistingtechnologiessawupto70to80percentreductionsincostpertransactionforcertainlabor-heavyprocesses.

Atthislevel,thekeyconstraintsaretiedtoorganizationalandoperating-modelissues.The

CEOandboardwillneedtobeintimatelyinvolvedtorearchitecttheoperatingmodel,includingleadershipandteamresponsibilitiesthathistoricallyhavelivedinsiloedcorporatefunctions.

Incrementalchangeswon’twork;thisleveloftransformationrequiresaclearbreakwithpastpractices.

Decisionstomakealonganagenticjourney—andsomebigimplicationstoconsider

TohelpCEOsvisualizethejourneyandsurfacesomecriticaldecisionsalongtheway,we’ve

laidoutahigh-level,hypotheticaltwo-tothree-yearroadmap.IthighlightscertainmarkerstoaimforandsomeofthekeydecisionsthatrequiretheCEOtobeactivelyinvolved.(Seesidebar“Howstart-upsbuiltaroundAIagentsarereshapingbusiness”forouttakesfromaninterview

4“

SeizingtheagenticAIadvantage

,”McKinsey,June13,2025.

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage7

withMagnusGrimeland,thecofounderandCEOofthetechventurecapitalandincubatorcompanyAntler.)

Thegoalsandtimelinespresentedintheroadmapareaggressive,andweacknowledgethat

muchwillchangeoverthetwo-yeartimeline.Inourexperience,however,itiscrucialforCEOstosetboldaspirationsandgoalstomotivatethebusinessandmovewithurgency.

Yearsoneandtwo:Settingthecourseandcreatingmomentum

Initialgoalsinyearoneshouldincludebuildingunderstanding,creatingmomentum,and

developingthefoundationssoAIagentscanworkatscale.Thefocusshouldbeondrivingdownoperatingcostsofexistingactivitiesinatargetedsetoffunctionsandoperations(considera

goalofupto10percentefficiencygains,forexample).Firstandforemost,though,thisphaseisaboutbreakingthroughtheinertia,movingwithpurpose,and

learning

.

Howstart-upsbuiltaroundAIagentsarereshapingbusiness

MagnusGrimeland,cofounderandCEOofventurecapitalfirmAntler,talkedwithMcKinseySeniorPartnerLariH?m?l?inenabouthowstart-upsaretakingadvantageofAIagents.Thefollowingisanedited

excerptofthatconversation.

LariH?m?l?inen:Doyouseeagentic-firstmodelsdisruptingbusinessmodels?

MagnusGrimeland:Absolutely.Some

companiesarejustbuildingmoreeffectivecoststructures,suchasautomatingthe

backofficeorbigpartsofthedevelopmentcycle.Butsomecompaniesarebeing

muchmoredisruptivebycompletely

removinghumansfromcorepartsofthe

businessmodel.Onelogisticscompanywebackedislookingtocompletelyrearchitectandreplacetheback-officefunctionsthatoptimizetheentiresupplychainaroundAIagents.Anotheroneislookingtoreplace

processengineersfromfactories.Therearetremendousopportunitiesacrossthevaluechain.

LariH?m?l?inen:Amongstart-ups

thatarebuildingaroundAIagentsandAIingeneral,howaretheybuildingupbusinessesdifferently?

MagnusGrimeland:That’sabroad

question,butafewthemeshaveemerged.Oneisthatwe’reseeingcompaniesgrow

fasterwithsignificantlyfewerpeople

thanwe’veeverseenbefore.Two,they

typicallyhavemuchflatterstructures,

withleadershipbeingmuchmoreactiveinproductdevelopmentandsales,andthe

wholeteamiscomposedofbuilders.Inthepast,whenstartingupalogisticscompany,forexample,you’dlookforpeoplewithtento15yearsofexperienceintheindustry.

WithAI,itwillbemoreandmoreaboutfindingthebesttechnologytalentandengineers.

Andanotheristhatstart-upsarereallykeenlyattunedtothespeedofchange.

Thatmeanstheythinkintermsofhow

tocontinuouslyupskillandreskilltheir

people,andtheyconstantlyscanthe

marketforbreakthroughsandpotential

competitors.AIisdevelopingataspeed

thatismuchfasterthanpreviouscycles,

andyouquicklybecomeirrelevantifyou’renotontopofnewcapabilities.

Wealsoseethisspeedandflexibility

playingout,ascostshavecomedownsignificantly.Inthepast,whenyoubuilt

ane-commercesite,youneededatech

backbone,whichneededalotofplanningandlongproductdevelopmentcycles.

Withgen-AI-firstcompanies,theproductcycleismuchfaster,andthereistheabilityforpeopletoswitchsystems.Youcan

buildontopofoneinfrastructure,then

switchovertoanotherrelativelyeasilyifit’sabetteroption.Thismeansitismucheasier,cheaper,andfastertobuildandexperiment.

LariH?m?l?inen:WhereisthevaluegoingtocomefromintheAIagentworld?

MagnusGrimeland:Whatvaluemeansandwhereitcomesfromhastoswitch.

Manyservicestodayareessentially

addingan“AIagent”buttonontotheir

existingservicesandthencharging30to40percentmoreforit.Thatmodelwon’t

workverywellforlong.Allcompanies

havetothinkaboutrebuildingAIfirst.Thatmeansrethinkinghowtoengagewiththeuser,howtoaccessinformation,andhowtoservecustomersdifferently.Thiswill

eventuallybeaboutreplacingservicesratherthanjustcreatingincrementalrevenuestreams.

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage8

Inyearsoneandtwo,lookforthefollowingagenticbusinessmarkers:

—Agent“fluency”growsquickly.BeingabletouseAIagentsproductivelyisarequirementforallworkers.Whilethevaluetothebusinessislow,buildingupthiscapabilityamong

employeesisthe“costofdoingbusiness.”Thegoalshouldbetohavemorethan25to50percentofemployeesworkingwithenterpriseagentsandAItoolsregularly.Allemployeesshouldbeinterrogatingdatathrough“chats”withagentsratherthanjustreadingreports.

—Agentsareautomatingabroadrangeofexistingprocesseswithfirst-generationtools.

Thisincludescriticalprocessessuchasfinancialfilingsandbroaderdocumentauthoring,

approvalsinexistingprocesses,andsoon.Concretebenefits,likesignificantlyfasterlead

timesandlowertransactioncosts,shouldbeclearlyevident.Forexample,intargetedcases,suchascorrectingsimple,well-structureddataqualityissues,agenticAIcanresolve90to

95percentoftheissues.

—Firstagenticsoftwaresystemsareintegratedintokeysystems.Keysystemsarechanging

theirinterfacestowardprompt-basedqueryingratherthanstaticcommands.Agentsarein

placeinkeysystemstoautomaticallycreateinsights,executetasks,andcoordinateactivities.Automatedcapabilitiessuchasplanningorinformationgatheringareincreasinglythenorm,

andsupportingsystems(suchasreporting)arechangingfast.

—Afront-runnerteamlaunchesalighthousetoreimagineacompleteend-to-endprocess.

Theteamdesignsa24-monthtargetstatevisionforacompleteprocess(forexample,

ordertocash,recordtoreport,automatedloanacceptanceandprovisioning)andstarts

byreleasingaseriesofminimumviableproductstotestandexpandcapabilities.Thegoalsshouldbebold.Foranorder-to-cashprocess,forexample,thegoalcouldbetoautomategreaterthan70percentoftransactionsacrossallchannels.

—Thedemandforcertainrolesmaylessenasproductivityincreases.AIagentshavereliablyandefficientlytakenoversimplecodingtasks,reducingtheburdenonsomeexistingroles.

Thelatestcodingagents(especiallyfront-endcodeexecution),forexample,significantlyincreaseproductivitybyasmuchas50to100percent.

EnablingthebusinesstohitthesemarkerswillrequireCEOstoaddresssomecorebusinessareas:

Architectingthetransformationforvalue.Toomuchofthecurrentfocusisonindividual

productivity;whileuseful,thisisn’twherethegreatestpoolsofvalueare.CEOsneedtoaspire

totransformationalvalue,whichwillcomefromrearchitectingandredesigningentireworkflowswithagents.

TheCEOwillneedtoensureteamsmovefromworkingonisolatedusecasestofocusingon

cross-functionalpriorityworkflows.Thiswillnecessitateanorganizationalshiftawayfrom

siloedAIteamstowardcross-functionalagenticteamsthatincludeAI,data,IT,technology,andfunctionalexpertsfromrelevantdomains.

Astheseteamswork,itwillbecrucialtoputapremiumonthelearningthatisgenerated.This

meansensuringthatenterprise-widelearningsarecentrallycapturedandreusedacrossthe

organization.Italsomeanscodifyinganagent-firstworkflowredesignplaybook,includingROI

criteria,multiagentorchestrationpatterns,techanddataintegrationbestpractices,controlsandevaluations,andwhenorwhennottoapplyagents.

Thechangeagent:Goals,decisions,andimplicationsforCEOsintheagenticage9

Toleadthiseffort,organizationswillneedacentralteam(“agenticfactory”)responsibleforidentifyingtheworkflows,managingtheredesign,andscalingtheredesign.

Scalingthetransformation.In2022,Amazon’sfounder,JeffBezos,mandatedthatdevelopers’codeincludeAPIsthatcouldbeexposedtothirdparties.Th

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論