版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第九章
MonteCarlo積分第九章MonteCarlo積分MonteCarlo法的重要應(yīng)用領(lǐng)域之一:計算積分和多重積分適用于求解:被積函數(shù)、積分邊界復(fù)雜,難以用解析方法或一般的數(shù)值方法求解;被積函數(shù)的具體形式未知,只知道由模擬返回的函數(shù)值。本章內(nèi)容:用MonteCarlo法求定積分的幾種方法:均勻投點法、期望值估計法、重要抽樣法、半解析法、…第九章MonteCarlo積分Goal:Evaluateanintegral:Whyuserandommethods?Computationby“deterministicquadrature”canbecomeexpensiveandinaccurate.gridpointsaddupquicklyinhighdimensionsbadchoicesofgridmaymisrepresentg(x)第九章MonteCarlo積分MonteCarlomethodcanbeusedtocomputeintegralofanydimensiond(d-foldintegrals)Errorcomparisonofd-foldintegralsSimpson’srule,…purelystatistical,notrelyonthedimension!MonteCarlomethodWINS,whend>>3MonteCarlomethodapproximatingtheintegralofafunctionfusingquadraticpolynomials第九章MonteCarlo積分Hit-or-MissMethodSampleMeanMethodVarianceReductionTechniqueVarianceReductionusingRejectionTechniqueImportanceSamplingMethodHit-or-MissMethodEvaluationofadefiniteintegralabhXXXXXXOOOOOOOProbabilitythatarandompointresideinsidetheareaN:TotalnumberofpointsM:pointsthatresideinsidetheregionHit-or-MissMethodSampleuniformlyfromtherectangularregion[a,b]x[0,h]TheprobabilitythatwearebelowthecurveisSo,ifwecanestimatep,wecanestimateI:whereisourestimateofpHit-or-MissMethodWecaneasilyestimatep:throwN“uniformdarts”attherectangleletletMbethenumberoftimesyouendupunder thecurvey=g(x)Hit-or-MissMethodabhXXXXXXOOOOOOOStartSetN:largeinteger
M=0Chooseapointxin[a,b]Chooseapointyin[0,h]if[x,y]resideinsidethenM=M+1I=(b-a)h(M/N)EndLoopNtimesHit-or-MissMethodErrorAnalysisoftheHit-or-MissMethodItisimportanttoknowhowaccuratetheresultofsimulationsare
notethatMisbinomial(M,p)第九章MonteCarlo積分Hit-or-MissMethodSampleMeanMethodVarianceReductionTechniqueVarianceReductionusingRejectionTechniqueImportanceSamplingMethodSampleMeanMethodStartSetN:largeinteger
s1=0,s2=0xn=(b-a)un+ayn=r(xn)s1=s1+yn,s2=s2+yn2Estimatemeanm’=s1/NEstimatevarianceV’=s2/N–m’2EndLoopNtimesSampleMeanMethodWritethisas:whereX~unif(a,b)SampleMeanMethodwhereX~unif(a,b)So,wewillestimateIbyestimatingE[g(X)]withwhereX1,X2,…,Xnisarandomsamplefromtheuniform(a,b)distribution.SampleMeanMethodExample:(weknowthattheanswerise3-119.08554)writethisaswhereX~unif(0,3)SampleMeanMethodwritethisaswhereX~unif(0,3)estimatethiswithwhereX1,X2,…,Xnarenindependentunif(0,3)’s.SampleMeanMethodSimulationResults:true=19.08554,n=100,000
1 19.107242 19.082603 18.972274 19.068145 19.13261 SimulationSampleMeanMethodDon’tevergiveanestimatewithoutaconfidenceinterval!Thisestimatoris“unbiased”:SampleMeanMethodSampleMeanMethodanapproximationSampleMeanMethodX1,X2,…,Xniid->g(X1),g(X2),…,g(Xn)iidLetYi=g(Xi)fori=1,2,…,nThenandwecanonceagaininvoketheCLT.SampleMeanMethodForn“l(fā)argeenough”(n>30),So,aconfidenceintervalforIisroughlygivenbybutsincewedon’tknow,we’llhavetobecontentwiththefurtherapproximation:SampleMeanMethodBytheway…NooneeversaidthatyouhavetousetheuniformdistributionExample:whereX~exp(rate=2).SampleMeanMethodComparisonofHit-and-MissandSampleMeanMonteCarloLetbethehit-and-missestimatorofIThenLetbethesamplemeanestimatorofISampleMeanMethodComparisonofHit-and-MissandSampleMeanMonteCarloSamplemeanMonteCarloisgenerallypreferredoverHit-and-MissMonteCarlobecause:theestimatorfromSMMChaslowervarianceSMMCdoesnotrequireanon-negativeintegrand (oradjustments)H&MMCrequiresthatyoubeabletoputg(x)ina “box”,soyouneedtofigureoutthemax valueofg(x)over[a,b]andyouneedtobe integratingoverafiniteintegral.2.1VarianceReductionTechnique-Introduction第九章MonteCarlo積分Hit-or-MissMethodSampleMeanMethodVarianceReductionTechniqueVarianceReductionusingRejectionTechniqueImportanceSamplingMethodVarianceReductionTechniqueIntroductionMonteCarloMethodandSamplingDistributionMonteCarloMethod:TakevaluesfromrandomsampleFromcentrallimittheorem,3sruleMostprobableerrorImportantcharacteristicsVarianceReductionTechniqueIntroductionReducingerror*100samplesreducestheerrororderof10ReducingvarianceVarianceReductionTechniqueThevalueofvarianceiscloselyrelatedtohowsamplesaretakenUnbiasedsamplingBiasedsamplingMorepointsaretakeninimportantpartsofthepopulationVarianceReductionTechniqueMotivationIfweareusingsample-meanMonteCarloMethodVariancedependsverymuchonthebehaviorofr(x)r(x)varieslittlevarianceissmallr(x)=constvariance=0EvaluationofaintegralNearminimumpointscontributelesstothesummationNearmaximumpointscontributemoretothesummationMorepointsaresamplednearthepeak”importancesamplingstrategy”第九章MonteCarlo積分1.2Hit-or-MissMethod1.3SampleMeanMethod2.1VarianceReductionTechnique2.3VarianceReductionusingRejectionTechnique2.4ImportanceSamplingMethodVarianceReductionTechniqueVarianceReductionforHit-or-MissmethodInthedomain[a,b]chooseacomparisonfunctionabw(x)XXXXXOOOOOOOr(x)Pointsaregeneratedontheareaunderw(x)functionRandomvariablethatfollowsdistributionw(x)VarianceReductionTechniquePointslyingabover(x)isrejectedq10P(q)r1-rabw(x)XXXXXOOOOOOOr(x)VarianceReductionTechniqueErrorAnalysisHitorMissmethodErrorreductionVarianceReductionTechniqueStartSetN:largeinteger
N’=0Generateu1,x=W-1(Au1)Generateu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 黑龍江公安警官職業(yè)學(xué)院《財務(wù)管理》2025 學(xué)年第二學(xué)期期末試卷
- 2025首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院門頭溝醫(yī)院(北京市門頭溝區(qū)醫(yī)院)面向社會引進(jìn)高層次醫(yī)療衛(wèi)生技術(shù)人才4人考試核心試題及答案解析
- 2025年腦智研究院招聘張若冰課題組招聘生物電鏡圖像處理與自動化工程師崗位備考題庫參考答案詳解
- 2025安徽黃山太平經(jīng)濟(jì)開發(fā)區(qū)投資有限公司招聘高管人員1人考試重點題庫及答案解析
- 2026年交通銀行交銀金融科技秋季校園招聘備考題庫及一套完整答案詳解
- 2025下半年廣東揭陽市市直衛(wèi)生健康事業(yè)單位赴外地院校招聘工作人員27人備考核心題庫及答案解析
- 2025湖北隨州市廣水市事業(yè)單位面向駐廣部隊隨軍家屬招聘5人筆試重點題庫及答案解析
- 2025下半年四川綿陽職業(yè)技術(shù)學(xué)院考核招聘高層次人才2人備考核心題庫及答案解析
- 新疆分院招聘廣東電信規(guī)劃設(shè)計院2026屆校招開啟(12人)備考筆試試題及答案解析
- 2025湖南長沙瀏陽市人民醫(yī)院公開招聘編外合同制人員8人備考核心題庫及答案解析
- 老年人失智癥護(hù)理與照護(hù)
- 2025重慶市勘規(guī)數(shù)智科技有限公司招聘3人考試題庫必考題
- 2025貴州錦麟化工有限責(zé)任公司第三次招聘7人參考筆試題庫及答案解析
- 村監(jiān)委會職責(zé)課件
- 學(xué)堂在線 雨課堂 學(xué)堂云 R語言數(shù)據(jù)分析 期末測試答案
- 個人與團(tuán)隊管理-008-國開機(jī)考復(fù)習(xí)資料
- GB/T 31326-2014植物飲料
- 招銀大學(xué)培訓(xùn)發(fā)展的探索與實踐
- 加油站火災(zāi)事故應(yīng)急專項預(yù)案
- 輕松帶你學(xué)習(xí)ANP法SD軟件
- DB3401∕T 244-2022 肢體(腦癱)殘疾兒童康復(fù)服務(wù)規(guī)范
評論
0/150
提交評論