版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆山東省臨沂河?xùn)|區(qū)七校聯(lián)考數(shù)學(xué)九年級(jí)第一學(xué)期期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A. B. C. D.2.如圖一塊直角三角形ABC,∠B=90°,AB=3,BC=4,截得兩個(gè)正方形DEFG,BHJN,設(shè)S1=DEFG的面積,S2=BHJN的面積,則S1、S2的大小關(guān)系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能確定3.公園有一塊正方形的空地,后來從這塊空地上劃出部分區(qū)域栽種鮮花(如圖),原空地一邊減少了1m,另一邊減少了2m,剩余空地的面積為18m2,求原正方形空地的邊長(zhǎng).設(shè)原正方形的空地的邊長(zhǎng)為xm,則可列方程為()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=04.一元二次方程x2﹣16=0的根是(
)A.x=2
B.x=4
C.x1=2,x2=﹣2
D.x1=4,x2=﹣45.若直線y=kx+b經(jīng)過第一、二、四象限,則直線y=bx+k的圖象大致是()A. B. C. D.6.一元二次方程x2﹣3x+5=0的根的情況是()A.沒有實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根C.只有一個(gè)實(shí)數(shù)根 D.有兩個(gè)不相等的實(shí)數(shù)根7.函數(shù)的圖象上有兩點(diǎn),,若,則()A. B. C. D.、的大小不確定8.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤9.如圖放置的幾何體的左視圖是()A. B. C. D.10.如圖,在⊙O,點(diǎn)A、B、C在⊙O上,若∠OAB=54°,則∠C()A.54° B.27° C.36° D.46°二、填空題(每小題3分,共24分)11.拋物線向左平移2個(gè)單位,再向上平移1個(gè)單位,得到的拋物線是______.12.如圖,點(diǎn)在雙曲線()上,過點(diǎn)作軸,垂足為點(diǎn),分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于,兩點(diǎn),作直線交軸于點(diǎn),交軸于點(diǎn),連接.若,則的值為______.13.如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)得到扇形ADE,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、E,若點(diǎn)D剛好落在上,則陰影部分的面積為_____.14.如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.15.如圖,在邊長(zhǎng)為2的正方形中,動(dòng)點(diǎn),分別以相同的速度從,兩點(diǎn)同時(shí)出發(fā)向和運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)停止),在運(yùn)動(dòng)過程中,則線段的最小值為________.16.如圖,為矩形對(duì)角線,的交點(diǎn),AB=6,M,N是直線BC上的動(dòng)點(diǎn),且,則的最小值是_.17.如圖,已知△ABC是面積為的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點(diǎn)F,則△AEF的面積等于_____(結(jié)果保留根號(hào)).18.如圖所示,點(diǎn)為平分線上一點(diǎn),以點(diǎn)為頂點(diǎn)的兩邊分別與射線,相交于點(diǎn),,如果在繞點(diǎn)旋轉(zhuǎn)時(shí)始終滿足,我們就把叫做的關(guān)聯(lián)角.如果,是的關(guān)聯(lián)角,那么的度數(shù)為______.三、解答題(共66分)19.(10分)已知⊙中,為直徑,、分別切⊙于點(diǎn)、.(1)如圖①,若,求的大?。唬?)如圖②,過點(diǎn)作∥,交于點(diǎn),交⊙于點(diǎn),若,求的大?。?0.(6分)如圖,平面直角坐標(biāo)系內(nèi),二次函數(shù)的圖象經(jīng)過點(diǎn),與軸交于點(diǎn).求二次函數(shù)的解析式;點(diǎn)為軸下方二次函數(shù)圖象上一點(diǎn),連接,若的面積是面積的一半,求點(diǎn)坐標(biāo).21.(6分)先化簡(jiǎn),再求值:(1+)÷,其中a=1.22.(8分)如圖所示,直線y=x+2與雙曲線y=相交于點(diǎn)A(2,n),與x軸交于點(diǎn)C.(1)求雙曲線解析式;(2)點(diǎn)P在x軸上,如果△ACP的面積為5,求點(diǎn)P的坐標(biāo).23.(8分)(1)如圖1,在△ABC中,點(diǎn)D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點(diǎn)P,求證:;(2)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).①如圖2,若AB=AC=1,直接寫出MN的長(zhǎng);②如圖3,求證MN2=DM·EN.24.(8分)閱讀以下材料,并按要求完成相應(yīng)地任務(wù):萊昂哈德·歐拉(LeonhardEuler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.下面是該定理的證明過程(部分):延長(zhǎng)AI交⊙O于點(diǎn)D,過點(diǎn)I作⊙O的直徑MN,連接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所對(duì)的圓周角相等),∴△MDI∽△ANI,∴,∴①,如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,∵DE是⊙O的直徑,∴∠DBE=90°,∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所對(duì)圓周角相等),∴△AIF∽△EDB,∴,∴②,任務(wù):(1)觀察發(fā)現(xiàn):,(用含R,d的代數(shù)式表示);(2)請(qǐng)判斷BD和ID的數(shù)量關(guān)系,并說明理由;(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為cm.25.(10分)在△ABC中,∠ACB=90°,BC=kAC,點(diǎn)D在AC上,連接BD.(1)如圖1,當(dāng)k=1時(shí),BD的延長(zhǎng)線垂直于AE,垂足為E,延長(zhǎng)BC、AE交于點(diǎn)F.求證:CD=CF;(2)過點(diǎn)C作CG⊥BD,垂足為G,連接AG并延長(zhǎng)交BC于點(diǎn)H.①如圖2,若CH=CD,探究線段AG與GH的數(shù)量關(guān)系(用含k的代數(shù)式表示),并證明;②如圖3,若點(diǎn)D是AC的中點(diǎn),直接寫出cos∠CGH的值(用含k的代數(shù)式表示).26.(10分)如圖,已知A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于點(diǎn)B,OC=BC,AC=OB.(1)求證:AB是⊙O的切線;(2)若∠ACD=45°,OC=2,求弦CD的長(zhǎng).
參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)勾股定理,可得AB的長(zhǎng),根據(jù)銳角的余弦等于鄰邊比斜邊,可得答案.【詳解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
由勾股定理,得AB==5cosA==故選:B.本題考查銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.2、B【分析】根據(jù)勾股定理求出AC,求出AC邊上的高BM,根據(jù)相似三角形的性質(zhì)得出方程,求出方程的解,即可求得S1,如圖2,根據(jù)相似三角形的性質(zhì)列方程求得HJ=,于是得到S2=()2>()2,即可得到結(jié)論.【詳解】解:如圖1,設(shè)正方形DEFG的邊長(zhǎng)是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,過B作BM⊥AC于M,交DE于N,由三角形面積公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四邊形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的邊長(zhǎng)是;∴S1=()2,如圖2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故選:B.本題考查了相似三角形的性質(zhì)和判定,三角形面積公式,正方形的性質(zhì)的應(yīng)用,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.3、C【詳解】試題分析:可設(shè)原正方形的邊長(zhǎng)為xm,則剩余的空地長(zhǎng)為(x﹣1)m,寬為(x﹣2)m.根據(jù)長(zhǎng)方形的面積公式列方程可得=1.故選C.考點(diǎn):由實(shí)際問題抽象出一元二次方程.4、D【解析】本題考查了一元二次方程的解法,移項(xiàng)后即可得出答案.【詳解】解:16=x2,x=±1.故選:D本題考查了一元二次方程的解法,熟悉掌握一元二次方程的解法是解決本題的關(guān)鍵.5、A【分析】首先根據(jù)線y=kx+b經(jīng)過第一、二、四象限,可得k<0,b>0,再根據(jù)k<0,b>0判斷出直線y=bx+k的圖象所過象限即可.【詳解】根據(jù)題意可知,k<0,b>0,∴y=bx+k的圖象經(jīng)過一,三,四象限.故選A.此題主要考查了一次函數(shù)y=kx+b圖象所過象限與系數(shù)的關(guān)系:①k>0,b>0?y=kx+b的圖象在一、二、三象限;②k>0,b<0?y=kx+b的圖象在一、三、四象限;③k<0,b>0?y=kx+b的圖象在一、二、四象限;④k<0,b<0?y=kx+b的圖象在二、三、四象限.6、A【解析】Δ=b2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程沒有實(shí)數(shù)根,故選A.7、C【分析】根據(jù)題意先確定拋物線的對(duì)稱軸及開口方向,再根據(jù)點(diǎn)與對(duì)稱軸的遠(yuǎn)近,判斷函數(shù)值的大?。驹斀狻拷猓骸撸鄬?duì)稱軸是x=-2,開口向下,距離對(duì)稱軸越近,函數(shù)值越大,∵,∴.故選:C.本題主要考查二次函數(shù)的圖象性質(zhì)及單調(diào)性的規(guī)律,掌握開口向下,距離對(duì)稱軸越近,函數(shù)值越大是解題的關(guān)鍵.8、A【分析】由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與2的關(guān)系,然后根據(jù)對(duì)稱軸判定b與2的關(guān)系以及2a+b=2;當(dāng)x=﹣1時(shí),y=a﹣b+c;然后由圖象確定當(dāng)x取何值時(shí),y>2.【詳解】①∵對(duì)稱軸在y軸右側(cè),∴a、b異號(hào),∴ab<2,故正確;②∵對(duì)稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當(dāng)x=﹣1時(shí),y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯(cuò)誤;④根據(jù)圖示知,當(dāng)m=1時(shí),有最大值;當(dāng)m≠1時(shí),有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實(shí)數(shù)).故正確.⑤如圖,當(dāng)﹣1<x<3時(shí),y不只是大于2.故錯(cuò)誤.故選A.本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項(xiàng)系數(shù)a決定拋物線的開口方向,當(dāng)a>2時(shí),拋物線向上開口;當(dāng)a<2時(shí),拋物線向下開口;②一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>2),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<2),對(duì)稱軸在y軸右.(簡(jiǎn)稱:左同右異)③常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn),拋物線與y軸交于(2,c).9、C【分析】左視圖可得一個(gè)正方形,上半部分有條看不到的線,用虛線表示.【詳解】解:左視圖可得一個(gè)正方形,上半部分有條看不到的線,用虛線表示.故選C.本題考查簡(jiǎn)單組合體的三視圖.10、C【分析】先利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠AOB的度數(shù),然后利用圓周角解答即可.【詳解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案為C.本題考查了三角形內(nèi)角和和圓周角定理,其中發(fā)現(xiàn)并正確利用圓周角定理是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】先得到拋物線的頂點(diǎn)坐標(biāo)為(0,0),根據(jù)平移規(guī)律得到平移后拋物線的頂點(diǎn)坐標(biāo),則利用頂點(diǎn)式可得到平移后的拋物線的解析式為.【詳解】拋物線的頂點(diǎn)坐標(biāo)為(0,0),把點(diǎn)(0,0)向左平移2個(gè)單位,再向上平移1個(gè)單位得到的點(diǎn)的坐標(biāo)為(,1),
所以平移后的拋物線的解析式為.
故答案為:.本題考查了二次函數(shù)圖象的平移:由于拋物線平移后的形狀不變,故a不變,再考慮平移后的頂點(diǎn)坐標(biāo),即可求出解析式.12、【分析】設(shè)OA交CF于K.利用面積法求出OA的長(zhǎng),再利用相似三角形的性質(zhì)求出AB、OB即可解決問題;【詳解】解:如圖,設(shè)OA交CF于K.由作圖可知,CF垂直平分線段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案為:.本題考查了尺規(guī)作圖-作線段的垂直平分線,線段垂直平分線的性質(zhì),反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,勾股定理,相似三角形的判定與性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.13、3π+9.【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進(jìn)而得出答案.【詳解】解:連接BD,過點(diǎn)B作BN⊥AD于點(diǎn)N,∵將半徑為4,圓心角為90°的扇形BAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=3,BN=3,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD=﹣(﹣×6×3)=3π+9.故答案為3π+9.本題主要考查了扇形的面積求法以及等邊三角形的判定與性質(zhì).正確得出△ABD是等邊三角形是關(guān)鍵.14、45°【詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.15、【解析】如圖(見解析),先根據(jù)正方形的性質(zhì)、三角形的判定定理與性質(zhì)得出,再根據(jù)正方形的性質(zhì)、角的和差得出,從而得出點(diǎn)P的運(yùn)動(dòng)軌跡,然后根據(jù)圓的性質(zhì)確認(rèn)CP取最小值時(shí)點(diǎn)P的位置,最后利用勾股定理、線段的和差求解即可.【詳解】由題意得:由正方形的性質(zhì)得:,即在和中,,即點(diǎn)P的運(yùn)動(dòng)軌跡在以AB為直徑的圓弧上如圖,設(shè)AB的中點(diǎn)為點(diǎn)O,則點(diǎn)P在以點(diǎn)O為圓心,OA為半徑的圓上連接OC,交弧AB于點(diǎn)Q由圓的性質(zhì)可知,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),CP取得最小值,最小值為CQ,即CP的最小值為故答案為:.本題是一道較難的綜合題,考查了三角形全等的判定定理與性質(zhì)、圓的性質(zhì)(圓周角定理)、勾股定理等知識(shí)點(diǎn),利用圓的性質(zhì)正確判斷出點(diǎn)P的運(yùn)動(dòng)軌跡以及CP最小時(shí)點(diǎn)P的位置是解題關(guān)鍵.16、2【分析】根據(jù)題意找到M與N的位置,再根據(jù)勾股定理求出OM,ON的長(zhǎng)即可解題.【詳解】解:過點(diǎn)O作OE⊥BC于E,由題可知當(dāng)E為MN的中點(diǎn)時(shí),此時(shí)OM+ON有最小值,∵AB=6,∴PE=3,(中位線性質(zhì))∵M(jìn)N=2,即ME=NE=1,∴OM=ON=,(勾股定理)∴OM+ON的最小值=2本題考查了圖形的運(yùn)動(dòng),中位線和勾股定理,找到M與N的位置是解題關(guān)鍵.17、【分析】如圖,過點(diǎn)F作FH⊥AE交AE于H,過點(diǎn)C作CM⊥AB交AB于M,根據(jù)等邊三角形的性質(zhì)可求出AB的長(zhǎng),根據(jù)相似三角形的性質(zhì)可得△ADE是等邊三角形,可得出AE的長(zhǎng),根據(jù)角的和差關(guān)系可得∠EAF=∠BAD=45°,設(shè)AH=HF=x,利用∠EFH的正確可用x表示出EH的長(zhǎng),根據(jù)AE=EH+AH列方程可求出x的值,根據(jù)三角形面積公式即可得答案.【詳解】如圖,過點(diǎn)F作FH⊥AE交AE于H,過點(diǎn)C作CM⊥AB交AB于M,∵△ABC是面積為的等邊三角形,CM⊥AB,∴×AB×CM=,∠BCM=30°,BM=AB,BC=AB,∴CM==,∴×AB×=,解得:AB=2,(負(fù)值舍去)∵△ABC∽△ADE,△ABC是等邊三角形,∴△ADE是等邊三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,設(shè)AH=HF=x,則EH=xtan30°=x.∵AB=2AD,AD=AE,∴AE=AB=1,∴x+x=1,解得x=.∴S△AEF=×1×=.故答案為:.本題考查了相似三角形的性質(zhì),等邊三角形的性質(zhì),銳角三角函數(shù),根據(jù)相似三角形的性質(zhì)得出△ADE是等邊三角形、熟練掌握等邊三角形的性質(zhì)并熟記特殊角的三角函數(shù)值是解題關(guān)鍵.18、【分析】由已知條件得到,結(jié)合∠AOP=∠BOP,可判定△AOP∽△POB,再根據(jù)相似三角形的性質(zhì)得到∠OPA=∠OBP,利用三角形內(nèi)角和180°與等量代換即可求出∠APB的度數(shù).【詳解】∵∴∵OP平分∠MON∴∠AOP=∠BOP∴△AOP∽△POB∴∠OPA=∠OBP在△OBP中,∠BOP=∠MON=25°∴∠OBP+∠OPB=∴∠OPA+∠OPB=155°即∠APB=155°故答案為:155°.本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定定理是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2)【分析】(1)根據(jù)切線性質(zhì)求出∠OBM=∠OAM=90°,根據(jù)圓周角定理求出∠COB,求出∠BOA,即可求出答案;
(2)連接AB、AD,得出平行四邊形,推出MB=AD,推出AB=AD,求出等邊三角形AMB,即可得出答案.【詳解】(1)連接OB,
∵M(jìn)A、MB分別切⊙O于A.
B,
∴∠OBM=∠OAM=90°,
∵弧BC對(duì)的圓周角是∠BAC,圓心角是∠BOC,∠BAC=25°,
∴∠BOC=2∠BAC=50°,
∴∠BOA=180°?50°=130°,
∴∠AMB=360°?90°?90°?130°=50°.
(2)連接AD,AB,
∵BD∥AM,DB=AM,
∴四邊形BMAD是平行四邊形,
∴BM=AD,
∵M(jìn)A切⊙O于A,
∴AC⊥AM,
∵BD∥AM,
∴BD⊥AC,
∵AC過O,
∴BE=DE,
∴AB=AD=BM,
∵M(jìn)A、MB分別切⊙O于A.
B,
∴MA=MB,
∴BM=MA=AB,
∴△BMA是等邊三角形,
∴∠AMB=60°.本題考查切線的性質(zhì)、平行四邊形的判定與性質(zhì)、等邊三角形的判定與性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)、平行四邊形的判定與性質(zhì)、等邊三角形的判定與性質(zhì).20、(1);(2)點(diǎn)坐標(biāo)為或【分析】(1)根據(jù)A、B、C三點(diǎn)坐標(biāo),運(yùn)用待定系數(shù)法即可解答;(2)由的面積是面積的一半,則D點(diǎn)的縱坐標(biāo)為-3,令y=3,求得x的值即為D點(diǎn)的縱坐標(biāo).【詳解】解:設(shè)D的坐標(biāo)為(x,yD)∵的面積是面積的一半∴,又∵點(diǎn)在軸下方,即.令y=-3,即解得:,,∴點(diǎn)坐標(biāo)為或本題主要考查了求二次函數(shù)解析式和三角形的面積,確定二次函數(shù)解析式并確定△ABD的高是解答本題的關(guān)鍵.21、化簡(jiǎn)為,值為【分析】先將分式化簡(jiǎn),再把值代入計(jì)算即可.【詳解】原式==,當(dāng)a=1時(shí),原式=.本題考查分式的化簡(jiǎn)求值,關(guān)鍵在于熟練掌握化簡(jiǎn)方法.22、(1);(2)(,0)或【分析】(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得n的值,則可求得A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設(shè)P(x,0),則可表示出PC的長(zhǎng),進(jìn)一步表示出△ACP的面積,可得到關(guān)于x的方程,解方程可求得P點(diǎn)的坐標(biāo).【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標(biāo)代入y=,得k=6,則雙曲線解析式為y=.(2)對(duì)于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設(shè)P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標(biāo)為或.23、(1)證明見解析;(2)①;②證明見解析.【分析】(1)易證明△ADP∽△ABQ,△ACQ∽△ADP,從而得出;(2)①根據(jù)等腰直角三角形的性質(zhì)和勾股定理,求出BC邊上的高,根據(jù)△ADE∽△ABC,求出正方形DEFG的邊長(zhǎng).從而,由△AMN∽△AGF和△AMN的MN邊上高,△AGF的GF邊上高,GF=,根據(jù)MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,則DG?EF=CF?BG;又DG=GF=EF,得GF2=CF?BG,再根據(jù)(1),從而得出結(jié)論.【詳解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴,同理在△ACQ和△APE中,,∴;(2)①作AQ⊥BC于點(diǎn)Q.∵BC邊上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=,DE=,∵DE邊上的高為,MN:GF=:,∴MN:=:,∴MN=.故答案為:.②證明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴,∴DG?EF=CF?BG,又∵DG=GF=EF,∴GF2=CF?BG,由(1)得,∴,∴,∵GF2=CF?BG,∴MN2=DM?EN.本題考查了相似三角形的判定和性質(zhì)以及正方形的性質(zhì),是一道綜合題目,難度較大.24、(1)R-d;(2)BD=ID,理由見解析;(3)見解析;(4).【解析】(1)直接觀察可得;(2)由三角形內(nèi)心的性質(zhì)可得∠BAD=∠CAD,∠CBI=∠ABI,由圓周角定理可得∠DBC=∠CAD,再根據(jù)三角形外角的性質(zhì)即可求得∠BID=∠DBI,繼而可證得BD=ID;(3)應(yīng)用(1)(2)結(jié)論即可;(4)直接代入結(jié)論進(jìn)行計(jì)算即可.【詳解】(1)∵O、I、N三點(diǎn)共線,∴OI+IN=ON,∴IN=ON﹣OI=R﹣d,故答案為:R﹣d;(2)BD=ID,理由如下:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,又,,∴DE·IF=IM·IN,∴,∴∴;(4)由(3)知:,把R=5,r=2代入得:,∵d>0,∴,故答案為:.本題是圓綜合題,主要考查了三角形外接圓、外心和內(nèi)切圓、內(nèi)心,圓周角性質(zhì),角平分線定義,三角形外角性質(zhì)等,綜合性較強(qiáng),熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.25、(1)證明見解析;(2)①,證明見解析;②cos∠CGH=.【分析】(1)只要證明△A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年及未來5年市場(chǎng)數(shù)據(jù)中國(guó)社區(qū)型購(gòu)物中心行業(yè)發(fā)展前景預(yù)測(cè)及投資策略研究報(bào)告
- 四川省成都市成華區(qū)2025-2026學(xué)年九年級(jí)上學(xué)期期末檢測(cè)歷史試卷(含答案)
- 工地臨時(shí)用水設(shè)施規(guī)劃
- 2026年漢中市中醫(yī)醫(yī)院招聘(9人)考試參考題庫(kù)及答案解析
- 2026浙江紹興市應(yīng)急管理局選調(diào)下屬事業(yè)單位人員1人筆試模擬試題及答案解析
- 2026云南云投版納石化有限責(zé)任公司招聘2人筆試參考題庫(kù)及答案解析
- 2026江蘇蘇州市太倉(cāng)市委員會(huì)宣傳部招聘1人筆試備考試題及答案解析
- 2026湖北黃岡市紅安縣博物館講解員招聘3人筆試參考題庫(kù)及答案解析
- 2026年松滋市事業(yè)單位人才引進(jìn)102人考試參考試題及答案解析
- 2026福建南平市浦城縣浦恒供應(yīng)鏈有限公司職業(yè)經(jīng)理人招聘1人考試備考題庫(kù)及答案解析
- 跨區(qū)銷售管理辦法
- 超聲年終工作總結(jié)2025
- 鉆井工程施工進(jìn)度計(jì)劃安排及其保證措施
- 管培生培訓(xùn)課件
- 梗阻性黃疸手術(shù)麻醉管理要點(diǎn)
- 架空輸電線路建設(shè)關(guān)鍵環(huán)節(jié)的質(zhì)量控制與驗(yàn)收標(biāo)準(zhǔn)
- 民用機(jī)場(chǎng)場(chǎng)道工程預(yù)算定額
- 重生之我在古代當(dāng)皇帝-高二上學(xué)期自律主題班會(huì)課件
- 膀胱切開取石術(shù)護(hù)理查房
- 混凝土試塊標(biāo)準(zhǔn)養(yǎng)護(hù)及制作方案
- GB/T 45355-2025無壓埋地排污、排水用聚乙烯(PE)管道系統(tǒng)
評(píng)論
0/150
提交評(píng)論