版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
開封市祥符區(qū)2025年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四2.如圖,AB∥CD,那么()A.∠BAD與∠B互補(bǔ) B.∠1=∠2 C.∠BAD與∠D互補(bǔ) D.∠BCD與∠D互補(bǔ)3.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.4.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°5.如圖,在中,點(diǎn)D為AC邊上一點(diǎn),則CD的長(zhǎng)為()A.1 B. C.2 D.6.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|7.在下列實(shí)數(shù)中,﹣3,,0,2,﹣1中,絕對(duì)值最小的數(shù)是()A.﹣3 B.0 C. D.﹣18.如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為()A. B. C. D.9.如圖是由幾個(gè)大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個(gè)數(shù),則該幾何體的左視圖是()A. B.C. D.10.如圖,為了測(cè)量河對(duì)岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線上,當(dāng)扇形AOB的半徑為2時(shí),陰影部分的面積為__________.12.某校為了解本校九年級(jí)學(xué)生足球訓(xùn)練情況,隨機(jī)抽查該年級(jí)若干名學(xué)生進(jìn)行測(cè)試,然后把測(cè)試結(jié)果分為4個(gè)等級(jí):A、B、C、D,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.該年級(jí)共有700人,估計(jì)該年級(jí)足球測(cè)試成績(jī)?yōu)镈等的人數(shù)為_____人.13.=_____.14.已知點(diǎn)P(1,2)關(guān)于x軸的對(duì)稱點(diǎn)為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個(gè)單位,所得的直線解析式為.15.中國(guó)古代的數(shù)學(xué)專著《九章算術(shù)》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設(shè)每只雀、燕的重量各為x兩,y兩,則根據(jù)題意,可得方程組為___.16.拋物線y=﹣x2+4x﹣1的頂點(diǎn)坐標(biāo)為.三、解答題(共8題,共72分)17.(8分)已知P是的直徑BA延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),∠P的另一邊交于點(diǎn)C、D,兩點(diǎn)位于AB的上方,=6,OP=m,,如圖所示.另一個(gè)半徑為6的經(jīng)過點(diǎn)C、D,圓心距.(1)當(dāng)m=6時(shí),求線段CD的長(zhǎng);(2)設(shè)圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點(diǎn)P的運(yùn)動(dòng)過程中,是否能成為以O(shè)O1為腰的等腰三角形,如果能,試求出此時(shí)n的值;如果不能,請(qǐng)說明理由.18.(8分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問題:求參與問卷調(diào)查的總?cè)藬?shù).補(bǔ)全條形統(tǒng)計(jì)圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).19.(8分)如圖,AB是⊙O直徑,BC⊥AB于點(diǎn)B,點(diǎn)C是射線BC上任意一點(diǎn),過點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長(zhǎng).20.(8分)如圖1所示,點(diǎn)E在弦AB所對(duì)的優(yōu)弧上,且BE為半圓,C是BE上的動(dòng)點(diǎn),連接CA、CB,已知AB=4cm,設(shè)B、C間的距離為xcm,點(diǎn)C到弦AB所在直線的距離為y1cm,A、C兩點(diǎn)間的距離為y2cm.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過程,請(qǐng)補(bǔ)充完整.按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y1、y2與x的幾組對(duì)應(yīng)值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;結(jié)合函數(shù)圖象,解決問題:①連接BE,則BE的長(zhǎng)約為cm.②當(dāng)以A、B、C為頂點(diǎn)組成的三角形是直角三角形時(shí),BC的長(zhǎng)度約為cm.21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),拋物線的對(duì)稱軸直線x=交x軸于點(diǎn)D.(1)求拋物線的解析式;(2)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo);(3)在(2)的條件下,將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點(diǎn)N,在線段GB上是否存在點(diǎn)P,使得以P、N、G為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.22.(10分)趙亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測(cè)得其長(zhǎng)度為9.6米和2米,則學(xué)校旗桿的高度為________米.23.(12分)計(jì)算:24.如圖,直線y=﹣x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),與x軸的另外一個(gè)交點(diǎn)為C填空:b=,c=,點(diǎn)C的坐標(biāo)為.如圖1,若點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m.PQ與OQ的比值為y,求y與m的數(shù)學(xué)關(guān)系式,并求出PQ與OQ的比值的最大值.如圖2,若點(diǎn)P是第四象限的拋物線上的一點(diǎn).連接PB與AP,當(dāng)∠PBA+∠CBO=45°時(shí).求△PBA的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進(jìn)行判斷直線y=kx-k不經(jīng)過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對(duì)應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).2、C【解析】
分清截線和被截線,根據(jù)平行線的性質(zhì)進(jìn)行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補(bǔ),即C選項(xiàng)符合題意;當(dāng)AD∥BC時(shí),∠BAD與∠B互補(bǔ),∠1=∠2,∠BCD與∠D互補(bǔ),故選項(xiàng)A、B、D都不合題意,故選:C.本題考查了平行線的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.3、D【解析】
首先過點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.4、D【解析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對(duì)的圓周角的度數(shù)是60°或120°,故選D.【點(diǎn)睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對(duì)角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.5、C【解析】
根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對(duì)應(yīng)邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.6、A【解析】
根據(jù)相反數(shù)的定義,對(duì)每個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯(cuò)誤;C、2與互為倒數(shù),故錯(cuò)誤;D、2=|﹣2|,故錯(cuò)誤;故選:A.本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.7、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對(duì)值最小的數(shù)是0,故選:B.8、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.構(gòu)造相似三角形是本題的關(guān)鍵,且求長(zhǎng)度問題一般需用到勾股定理來解決,常作垂線9、D【解析】根據(jù)俯視圖中每列正方形的個(gè)數(shù),再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:
.故選D.10、C【解析】
如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長(zhǎng)度,則易得AB=MN=CM﹣CN,即可得到結(jié)論.【詳解】如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、π﹣1【解析】
根據(jù)勾股定理可求OC的長(zhǎng),根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計(jì)算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.本題考查正方形的性質(zhì)和扇形面積的計(jì)算,解題關(guān)鍵是得到扇形半徑的長(zhǎng)度.12、1【解析】試題解析:∵總?cè)藬?shù)為14÷28%=50(人),∴該年級(jí)足球測(cè)試成績(jī)?yōu)镈等的人數(shù)為(人).故答案為:1.13、1【解析】分析:第一項(xiàng)根據(jù)非零數(shù)的零次冪等于1計(jì)算,第二項(xiàng)根據(jù)算術(shù)平方根的意義化簡(jiǎn),第三項(xiàng)根據(jù)負(fù)整數(shù)指數(shù)冪等于這個(gè)數(shù)的正整數(shù)指數(shù)冪的倒數(shù)計(jì)算.詳解:原式=1+2﹣2=1.故答案為:1.點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握零指數(shù)冪、算術(shù)平方根的意義,負(fù)整數(shù)指數(shù)冪的運(yùn)算法則是解答本題的關(guān)鍵.14、y=﹣1x+1.【解析】
由對(duì)稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點(diǎn)P(1,2)關(guān)于x軸的對(duì)稱點(diǎn)為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個(gè)單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點(diǎn):一次函數(shù)圖象與幾何變換.15、【解析】設(shè)每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.16、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y(tǒng)=﹣x2+4x﹣1轉(zhuǎn)化為頂點(diǎn)式解析式y(tǒng)=﹣(x﹣2)2+3,然后求其頂點(diǎn)坐標(biāo)為:(2,3).考點(diǎn):二次函數(shù)的性質(zhì)三、解答題(共8題,共72分)17、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點(diǎn)作⊥,垂足為點(diǎn),連接.解Rt△,得到的長(zhǎng).由勾股定理得的長(zhǎng),再由垂徑定理即可得到結(jié)論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結(jié)論;(3)△成為等腰三角形可分以下幾種情況討論:①當(dāng)圓心、在弦異側(cè)時(shí),分和.②當(dāng)圓心、在弦同側(cè)時(shí),同理可得結(jié)論.詳解:(1)過點(diǎn)作⊥,垂足為點(diǎn),連接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成為等腰三角形可分以下幾種情況:①當(dāng)圓心、在弦異側(cè)時(shí)i),即,由,解得.即圓心距等于、的半徑的和,就有、外切不合題意舍去.ii),由,解得:,即,解得.②當(dāng)圓心、在弦同側(cè)時(shí),同理可得:.∵是鈍角,∴只能是,即,解得.綜上所述:n的值為或.點(diǎn)睛:本題是圓的綜合題.考查了圓的有關(guān)性質(zhì)和兩圓的位置關(guān)系以及解直徑三角形.解答(3)的關(guān)鍵是要分類討論.18、(1)參與問卷調(diào)查的總?cè)藬?shù)為500人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】
(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;
(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計(jì)圖補(bǔ)充完整即可得出結(jié)論;
(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【詳解】(1)(人.答:參與問卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用樣本估計(jì)總體,解題的關(guān)鍵是:(1)觀察統(tǒng)計(jì)圖找出數(shù)據(jù),再列式計(jì)算;(2)通過計(jì)算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總?cè)藬?shù),估算出喜歡微信支付方式的人數(shù).19、(1)證明見解析;(2).【解析】
(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長(zhǎng)定理證明即可;(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計(jì)算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點(diǎn)D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.本題考查了切線的性質(zhì)、直角三角形的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.20、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解析】
(1)由題意得出BC=3cm時(shí),CD=2.85cm,從點(diǎn)C與點(diǎn)B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長(zhǎng)線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象即可;(3)①∵BC=6時(shí),CD=AC=4.1,即點(diǎn)C與點(diǎn)E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當(dāng)∠CAB=90°時(shí),AC=CD,即圖象y1與y2的交點(diǎn),由圖象可得:BC=6;當(dāng)∠CBA=90°時(shí),BC=AD,由圓的對(duì)稱性與∠CAB=90°時(shí)對(duì)稱,AC=6,由圖象可得:BC=4.1.【詳解】(1)由表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y1、y2與x的幾組對(duì)應(yīng)值知:BC=3cm時(shí),CD=2.85cm,從點(diǎn)C與點(diǎn)B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長(zhǎng)線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補(bǔ)充完整如下表:(2)描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象如圖2所示:(3)①∵BC=6cm時(shí),CD=AC=4.1cm,即點(diǎn)C與點(diǎn)E重合,CD與AC重合,BC為直徑,∴BE=BC=6cm,故答案為:6;②以A、B、C為頂點(diǎn)組成的三角形是直角三角形時(shí),分兩種情況:當(dāng)∠CAB=90°時(shí),AC=CD,即圖象y1與y2的交點(diǎn),由圖象可得:BC=6cm;當(dāng)∠CBA=90°時(shí),BC=AD,由圓的對(duì)稱性與∠CAB=90°時(shí)對(duì)稱,AC=6cm,由圖象可得:BC=4.1cm;綜上所述:BC的長(zhǎng)度約為6cm或4.1cm;故答案為:6或4.1.本題是圓的綜合題目,考查了勾股定理、探究試驗(yàn)、函數(shù)以及圖象、圓的對(duì)稱性、直角三角形的性質(zhì)、分類討論等知識(shí);本題綜合性強(qiáng),理解探究試驗(yàn)、看懂圖象是解題的關(guān)鍵.21、(1);(1),E(1,1);(3)存在,P點(diǎn)坐標(biāo)可以為(1+,5)或(3,5).【解析】
(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對(duì)稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點(diǎn)坐標(biāo).(3)設(shè)N點(diǎn)為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點(diǎn)P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點(diǎn)坐標(biāo).又由△ABC∽△GNP,且時(shí),得n=3或n=﹣2(舍去).求得P點(diǎn)坐標(biāo).【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對(duì)稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點(diǎn)式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時(shí),S四邊形CDBF最大,為.此時(shí),E點(diǎn)坐標(biāo)為(1,1).(3)存在.如圖1,由線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點(diǎn)P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時(shí)P點(diǎn)坐標(biāo)為(1+,5).當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時(shí)P點(diǎn)坐標(biāo)為(3,5).綜上所述,滿足題意的P點(diǎn)坐標(biāo)可以為,(1+,5),(3,5).本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.22、10【解析】試題分析:根據(jù)相似的性質(zhì)可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點(diǎn):相似的應(yīng)用23、5【解析】
本題涉及零指數(shù)冪、負(fù)整數(shù)指數(shù)冪、絕對(duì)值、乘方四個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.【詳解】原式=4-8×0.125+1+1=4-1+2=5本題考查實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見的計(jì)算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、乘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)務(wù)報(bào)告管理辦法
- 標(biāo)準(zhǔn)樣品倉庫火災(zāi)防控預(yù)案
- 河北地生中考試卷及答案
- 合規(guī)管理制度建設(shè)管理標(biāo)準(zhǔn)
- 鋁型材加工建設(shè)項(xiàng)目申請(qǐng)報(bào)告
- VTE患者護(hù)理創(chuàng)新思維
- 揚(yáng)州初中會(huì)考試卷及答案
- 覆銅陶瓷基板項(xiàng)目實(shí)施方案
- 生物質(zhì)炭及矸石綜合利用項(xiàng)目初步設(shè)計(jì)
- 生地會(huì)考試卷真題及答案
- FSMS食品安全管理體系
- 新疆開放大學(xué)2025年春《國(guó)家安全教育》形考作業(yè)1-4終考作業(yè)答案
- GB/T 45451.2-2025包裝塑料桶第2部分:公稱容量為208.2 L至220 L的不可拆蓋(閉口)桶
- 中國(guó)特色社會(huì)主義理論與實(shí)踐研究知到課后答案智慧樹章節(jié)測(cè)試答案2025年春北京交通大學(xué)
- 25年高考語文滿分作文范文4篇
- 北京市海淀區(qū)2022-2023學(xué)年五年級(jí)上學(xué)期語文期末試卷(含答案)
- 醫(yī)學(xué)檢驗(yàn)技術(shù)專業(yè)《血液學(xué)檢驗(yàn)》課程標(biāo)準(zhǔn)
- 預(yù)防控制冬蚊
- 經(jīng)典話劇劇本《雷雨》
- 半導(dǎo)體廠耗能指標(biāo)及節(jié)能方案之研究57張課件
- 奶牛產(chǎn)后癱瘓的綜合防治畢業(yè)設(shè)計(jì)論文
評(píng)論
0/150
提交評(píng)論