版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高考數(shù)學等差數(shù)列多選題專項訓練復習題及答案一、等差數(shù)列多選題1.首項為正數(shù),公差不為0的等差數(shù)列,其前項和為,則下列4個命題中正確的有()A.若,則,;B.若,則使的最大的n為15;C.若,,則中最大;D.若,則.解析:ABD【分析】利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),逐一檢驗選項,即可得答案.【詳解】對于A:因為正數(shù),公差不為0,且,所以公差,所以,即,根據(jù)等差數(shù)列的性質(zhì)可得,又,所以,,故A正確;對于B:因為,則,所以,又,所以,所以,,所以使的最大的n為15,故B正確;對于C:因為,則,,則,即,所以則中最大,故C錯誤;對于D:因為,則,又,所以,即,故D正確,故選:ABD【點睛】解題的關(guān)鍵是先判斷d的正負,再根據(jù)等差數(shù)列的性質(zhì),對求和公式進行變形,求得項的正負,再分析和判斷,考查等差數(shù)列性質(zhì)的靈活應用,屬中檔題.2.公差為的等差數(shù)列,其前項和為,,,下列說法正確的有()A. B. C.中最大 D.解析:AD【分析】先根據(jù)題意得,,再結(jié)合等差數(shù)列的性質(zhì)得,,,中最大,,即:.進而得答案.【詳解】解:根據(jù)等差數(shù)列前項和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:.故AD正確,BC錯誤.故選:AD.【點睛】本題考查等差數(shù)列的前項和公式與等差數(shù)列的性質(zhì),是中檔題.3.設等差數(shù)列{an}的前n項和為Sn,公差為d.已知a3=12,S12>0,a7<0,則()A.a(chǎn)6>0B.C.Sn<0時,n的最小值為13D.數(shù)列中最小項為第7項解析:ABCD【分析】S12>0,a7<0,利用等差數(shù)列的求和公式及其性質(zhì)可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得<d<﹣3.a(chǎn)1>0.利用S13=13a7<0.可得Sn<0時,n的最小值為13.數(shù)列中,n≤6時,>0.7≤n≤12時,<0.n≥13時,>0.進而判斷出D是否正確.【詳解】∵S12>0,a7<0,∴>0,a1+6d<0.∴a6+a7>0,a6>0.∴2a1+11d>0,a1+5d>0,又∵a3=a1+2d=12,∴<d<﹣3.a(chǎn)1>0.S13==13a7<0.∴Sn<0時,n的最小值為13.數(shù)列中,n≤6時,>0,7≤n≤12時,<0,n≥13時,>0.對于:7≤n≤12時,<0.Sn>0,但是隨著n的增大而減??;an<0,但是隨著n的增大而減小,可得:<0,但是隨著n的增大而增大.∴n=7時,取得最小值.綜上可得:ABCD都正確.故選:ABCD.【點評】本題考查了等差數(shù)列的通項公式與求和公式及其性質(zhì),考查了推理能力與計算能力,屬于難題.4.設等差數(shù)列的前項和為,公差為.已知,,則()A. B.數(shù)列是遞增數(shù)列C.時,的最小值為13 D.數(shù)列中最小項為第7項解析:ACD【分析】由已知得,又,所以,可判斷A;由已知得出,且,得出時,,時,,又,可得出在上單調(diào)遞增,在上單調(diào)遞增,可判斷B;由,可判斷C;判斷,的符號,的單調(diào)性可判斷D;【詳解】由已知得,,又,所以,故A正確;由,解得,又,當時,,時,,又,所以時,,時,,所以在上單調(diào)遞增,在上單調(diào)遞增,所以數(shù)列不是遞增數(shù)列,故B不正確;由于,而,所以時,的最小值為13,故C選項正確;當時,,時,,當時,,時,,所以當時,,,,時,為遞增數(shù)列,為正數(shù)且為遞減數(shù)列,所以數(shù)列中最小項為第7項,故D正確;【點睛】本題考查等差數(shù)列的公差,項的符號,數(shù)列的單調(diào)性,數(shù)列的最值項,屬于較難題.5.(多選題)等差數(shù)列的前n項和為,若,公差,則下列命題正確的是()A.若,則必有=0B.若,則必有是中最大的項C.若,則必有D.若,則必有解析:ABC【分析】根據(jù)等差數(shù)列性質(zhì)依次分析即可得答案.【詳解】解:對于A.,若,則,所以,所以,故A選項正確;對于B選項,若,則,由于,公差,故,故,所以是中最大的項;故B選項正確;C.若,則,由于,公差,故,故,的符號不定,故必有,無法確定;故C正確,D錯誤.故選:ABC.【點睛】本題考查數(shù)列的前項和的最值問題與等差數(shù)列的性質(zhì),是中檔題.6.在數(shù)列中,若為常數(shù),則稱為“等方差數(shù)列”下列對“等方差數(shù)列”的判斷正確的是()A.若是等差數(shù)列,則是等方差數(shù)列B.是等方差數(shù)列C.若是等方差數(shù)列,則為常數(shù)也是等方差數(shù)列D.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列解析:BCD【分析】根據(jù)等差數(shù)列和等方差數(shù)列定義,結(jié)合特殊反例對選項逐一判斷即可.【詳解】對于A,若是等差數(shù)列,如,則不是常數(shù),故不是等方差數(shù)列,故A錯誤;對于B,數(shù)列中,是常數(shù),是等方差數(shù)列,故B正確;對于C,數(shù)列中的項列舉出來是,,,,,,,數(shù)列中的項列舉出來是,,,,,,將這k個式子累加得,,,k為常數(shù)是等方差數(shù)列,故C正確;對于D,是等差數(shù)列,,則設是等方差數(shù)列,是常數(shù),故,故,所以,是常數(shù),故D正確.故選:BCD.【點睛】本題考查了數(shù)列的新定義問題和等差數(shù)列的定義,屬于中檔題.7.已知數(shù)列為等差數(shù)列,則下列說法正確的是()A.(d為常數(shù)) B.數(shù)列是等差數(shù)列C.數(shù)列是等差數(shù)列 D.是與的等差中項解析:ABD【分析】由等差數(shù)列的性質(zhì)直接判斷AD選項,根據(jù)等差數(shù)列的定義的判斷方法判斷BC選項.【詳解】A.因為數(shù)列是等差數(shù)列,所以,即,所以A正確;B.因為數(shù)列是等差數(shù)列,所以,那么,所以數(shù)列是等差數(shù)列,故B正確;C.,不是常數(shù),所以數(shù)列不是等差數(shù)列,故C不正確;D.根據(jù)等差數(shù)列的性質(zhì)可知,所以是與的等差中項,故D正確.故選:ABD【點睛】本題考查等差數(shù)列的性質(zhì)與判斷數(shù)列是否是等差數(shù)列,屬于基礎題型.8.已知無窮等差數(shù)列的前n項和為,,且,則()A.在數(shù)列中,最大B.在數(shù)列中,或最大C.D.當時,解析:AD【分析】利用等差數(shù)列的通項公式可以求,,即可求公差,然后根據(jù)等差數(shù)列的性質(zhì)判斷四個選項是否正確.【詳解】因為,所以,因為,所以,所以等差數(shù)列公差,所以是遞減數(shù)列,故最大,選項A正確;選項不正確;,所以,故選項C不正確;當時,,即,故選項D正確;故選:AD【點睛】本題主要考查了等差數(shù)列的性質(zhì)和前n項和,屬于基礎題.9.等差數(shù)列的前項和為,若,,則下列結(jié)論正確的是()A. B. C. D.解析:ABD【分析】先根據(jù)題意可知前9項的和最小,判斷出正確;根據(jù)題意可知數(shù)列為遞減數(shù)列,則,又,進而可知,判斷出不正確;利用等差中項的性質(zhì)和求和公式可知,,故正確.【詳解】根據(jù)題意可知數(shù)列為遞增數(shù)列,,,前9項的和最小,故正確;,故正確;,故正確;,,,故不正確.故選:.【點睛】本題考查等差數(shù)列的綜合應用,考查邏輯思維能力和運算能力,屬于??碱}.10.等差數(shù)列的前n項和記為,若,,則()A. B.C. D.當且僅當時,解析:AB【分析】根據(jù)等差數(shù)列的性質(zhì)及可分析出結(jié)果.【詳解】因為等差數(shù)列中,所以,又,所以,所以,,故AB正確,C錯誤;因為,故D錯誤,故選:AB【點睛】關(guān)鍵點睛:本題突破口在于由得到,結(jié)合,進而得到,考查學生邏輯推理能力.11.斐波那契數(shù)列,又稱黃金分割數(shù)列、兔子數(shù)列,是數(shù)學家列昂多·斐波那契于1202年提出的數(shù)列.斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,此數(shù)列從第3項開始,每一項都等于前兩項之和,記該數(shù)列為,則的通項公式為()A.B.且C.D.解析:BC【分析】根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式,再驗證即可;【詳解】解:斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,顯然,,,,,所以且,即B滿足條件;由,所以所以數(shù)列是以為首項,為公比的等比數(shù)列,所以所以,令,則,所以,所以以為首項,為公比的等比數(shù)列,所以,所以;即C滿足條件;故選:BC【點睛】考查等比數(shù)列的性質(zhì)和通項公式,數(shù)列遞推公式的應用,本題運算量較大,難度較大,要求由較高的邏輯思維能力,屬于中檔題.12.已知等差數(shù)列的前n項和為,公差為d,且,,則()A. B. C. D.解析:BD【分析】由等差數(shù)列下標和性質(zhì)結(jié)合前項和公式,求出,可判斷C,D,由等差數(shù)列基本量運算,可得公差,判斷出A,B.【詳解】因為,所以.因為,,所以公差.故選:BD13.已知數(shù)列滿足,(),數(shù)列的前項和為,則()A. B.C. D.解析:BC【分析】根據(jù)遞推公式,得到,令,得到,可判斷A錯,B正確;根據(jù)求和公式,得到,求出,可得C正確,D錯.【詳解】由可知,即,當時,則,即得到,故選項B正確;無法計算,故A錯;,所以,則,故選項C正確,選項D錯誤.故選:BC.【點睛】方法點睛:由遞推公式求通項公式的常用方法:(1)累加法,形如的數(shù)列,求通項時,常用累加法求解;(2)累乘法,形如的數(shù)列,求通項時,常用累乘法求解;(3)構(gòu)造法,形如(且,,)的數(shù)列,求通項時,常需要構(gòu)造成等比數(shù)列求解;(4)已知與的關(guān)系求通項時,一般可根據(jù)求解.14.設數(shù)列滿足,對任意的恒成立,則下列說法正確的是()A. B.是遞增數(shù)列C. D.解析:ABD【分析】構(gòu)造函數(shù),再利用導數(shù)判斷出函數(shù)的單調(diào)性,利用單調(diào)性即可求解.【詳解】由,設,則,所以當時,,即在上為單調(diào)遞增函數(shù),所以函數(shù)在為單調(diào)遞增函數(shù),即,即,所以,即,所以,,故A正確;C不正確;由在上為單調(diào)遞增函數(shù),,所以是遞增數(shù)列,故B正確;,所以因此,故D正確故選:ABD【點睛】本題考查了數(shù)列性質(zhì)的綜合應用,屬于難題.15.題目文件丟失!16.題目文件丟失!17.題目文件丟失!18.在等差數(shù)列中,公差,前項和為,則()A. B.,,則C.若,則中的最大值是 D.若,則解析:AD【分析】對于,作差后利用等差數(shù)列的通項公式運算可得答案;對于,根據(jù)等差數(shù)列的前項和公式得到和,進而可得,由此可知,故不正確;對于,由得到,,然后分類討論的符號可得答案;對于,由求出及,根據(jù)數(shù)列為等差數(shù)列可求得.【詳解】對于,因為,且,所以,所以,故正確;對于,因為,,所以,即,,即,因為,所以,所以,即,故不正確;對于,因為,所以,所以,即,當時,等差數(shù)列遞增,則,所以中的最小值是,無最大值;當時,等差數(shù)列遞減,則,所以中的最大值是,無最小值,故不正確;對于,若,則,時,,因為數(shù)列為等差數(shù)列,所以,故正確.故選:AD【點睛】關(guān)鍵點點睛:熟練掌握等差數(shù)列的通項公式、前項和公式是解題關(guān)鍵.19.已知數(shù)列的前n項和為,且滿足,,則下列說法錯誤的是()A.數(shù)列的前n項和為 B.數(shù)列的通項公式為C.數(shù)列為遞增數(shù)列 D.數(shù)列為遞增數(shù)列解析:ABC【分析】數(shù)列的前項和為,且滿足,,可得:,化為:,利用等差數(shù)列的通項公式可得,,時,,進而求出.【詳解】數(shù)列的前項和為,且滿足,,∴,化為:,∴數(shù)列是等差數(shù)列,公差為4,∴,可得,∴時,,,對選項逐一進行分析可得,A,B,C三個選項錯誤,D選項正確.故選:ABC.【點睛】本題考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 谷丙轉(zhuǎn)氨酶與肝病診斷研究-洞察及研究
- 多目標優(yōu)化配置在水資源調(diào)配中的應用-洞察及研究
- 播音主持專業(yè)實習總結(jié)報告范例
- 影像診斷報告撰寫規(guī)范指南
- 自動化生產(chǎn)線調(diào)研分析報告
- 中藥飲片配送與存儲項目可行性報告
- 醫(yī)院節(jié)假日安全管理總結(jié)報告
- 新產(chǎn)品試運行階段風險評估報告
- 農(nóng)民工勞動合同規(guī)范及維權(quán)指南
- 國際貿(mào)易合同風險防范報告
- 公園游船安全知識培訓課件
- 保安崗位安全意識培訓課件
- 智能家居行業(yè)人才競爭分析2025年可行性研究報告
- 醫(yī)院四級電子病歷評審匯報
- 工會財務知識課件
- 國學館展廳設計
- 三維傷口掃描系統(tǒng):革新傷口評估模式的關(guān)鍵力量
- AI在體育領(lǐng)域的數(shù)據(jù)分析與預測
- 國開機考答案 管理學基礎2025-06-21
- 2025年春國開(新疆)《國家安全教育》平時作業(yè)1-4題庫
- T/CI 312-2024風力發(fā)電機組塔架主體用高強鋼焊接性評價方法
評論
0/150
提交評論