人教版中考數(shù)學(xué)-二次函數(shù)和幾何綜合專題匯編_第1頁
人教版中考數(shù)學(xué)-二次函數(shù)和幾何綜合專題匯編_第2頁
人教版中考數(shù)學(xué)-二次函數(shù)和幾何綜合專題匯編_第3頁
人教版中考數(shù)學(xué)-二次函數(shù)和幾何綜合專題匯編_第4頁
人教版中考數(shù)學(xué)-二次函數(shù)和幾何綜合專題匯編_第5頁
已閱讀5頁,還剩52頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版中考數(shù)學(xué)二次函數(shù)和幾何綜合專題匯編一、二次函數(shù)壓軸題1.定義:若拋物線的頂點(diǎn)和與x軸的兩個交點(diǎn)所組成的三角形為等邊三角形時.則稱此拋物線為正拋物線.概念理解:(1)如圖,在△ABC中,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).試證明:以點(diǎn)A為頂點(diǎn),且與x軸交于D、C兩點(diǎn)的拋物線是正拋物線;問題探究:(2)已知一條拋物線經(jīng)過x軸的兩點(diǎn)E、F(E在F的左邊),E(1,0)且EF=2若此條拋物線為正拋物線,求這條拋物線的解析式;應(yīng)用拓展:(3)將拋物線y1=﹣x2+2x+9向下平移9個單位后得新的拋物線y2.拋物線y2的頂點(diǎn)為P,與x軸的兩個交點(diǎn)分別為M、N(M在N左側(cè)),把△PMN沿x軸正半軸無滑動翻滾,當(dāng)邊PN與x軸重合時記為第1次翻滾,當(dāng)邊PM與x軸重合時記為第2次翻滾,依此類推…,請求出當(dāng)?shù)?019次翻滾后拋物線y2的頂點(diǎn)P的對應(yīng)點(diǎn)坐標(biāo).2.如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于兩點(diǎn),點(diǎn)為拋物線的頂點(diǎn).點(diǎn)為軸上的動點(diǎn),將拋物線繞點(diǎn)旋轉(zhuǎn),得到新的拋物線,其中旋轉(zhuǎn)后的對應(yīng)點(diǎn)分別記為.(1)若,求原拋物線的函數(shù)表達(dá)式;(2)在(1)條件下,當(dāng)四邊形的面積為時,求的值;(3)探究滿足什么條件時,存在點(diǎn),使得四邊形為菱形?請說明理由.3.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ax2+bx+3與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).(1)求直線AC及拋物線的解析式,并求出D點(diǎn)的坐標(biāo);(2)若P為線段BD上的一個動點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時點(diǎn)P的坐標(biāo);(3)若點(diǎn)P是x軸上一個動點(diǎn),過P作直線1∥AC交拋物線于點(diǎn)Q,試探究:隨著P點(diǎn)的運(yùn)動,在拋物線上是否存在點(diǎn)Q,使以點(diǎn)A、P、Q、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出符合條件的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.4.小明對函數(shù)的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量的值為或時,函數(shù)值都為;當(dāng)自變量的值為或時,函數(shù)值都為.探究過程如下,請補(bǔ)充完整.(1)這個函數(shù)的表達(dá)式為;(2)在給出的平面直角坐標(biāo)系中,畫出這個函數(shù)的圖象并寫出這個函數(shù)的--條性質(zhì):;(3)進(jìn)一步探究函數(shù)圖象并解決問題:①直線與函數(shù)有三個交點(diǎn),則;②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集:.5.綜合與探究如圖,拋物線y=﹣x2﹣x+與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過B、C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動,連接CM,將線段MC繞點(diǎn)M順時針旋轉(zhuǎn)90°得到線段MD,連接CD、BD.設(shè)點(diǎn)M運(yùn)動的時間為t(t>0),請解答下列問題:(1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;(2)①請直接寫出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時t的值;②求點(diǎn)M運(yùn)動的過程中線段CD長度的最小值.6.已知拋物線有最低點(diǎn)為F.(1)當(dāng)拋物線經(jīng)過點(diǎn)E(-1,3)時,①求拋物線的解析式;②點(diǎn)M是直線下方拋物線上的一動點(diǎn),過點(diǎn)M作平行于y軸的直線,與直線交于點(diǎn)N,求線段長度的最大值;(2)將拋物線G向右平移m個單位得到拋物線.經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x之間存在一個函數(shù),求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的交點(diǎn)為P,請結(jié)合圖象求出點(diǎn)P的縱坐標(biāo)的取值范圍.7.如圖,拋物線經(jīng)過三點(diǎn),該拋物線的頂點(diǎn)為D.(1)求該拋物線L的表達(dá)式和點(diǎn)D的坐標(biāo);(2)拋物線與拋物線L關(guān)于直線對稱,P是拋物線L的B、M段上的一點(diǎn),過點(diǎn)P作y軸的平行線交拋物線與點(diǎn)Q,點(diǎn)P、Q關(guān)于拋物線L的對稱軸對稱點(diǎn)分別為M、N.試探究是否存在一點(diǎn)P,使得四邊形為正方形?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.8.如圖,拋物線的圖象交x軸于、B兩點(diǎn),頂點(diǎn)為點(diǎn),連接.(1)求拋物線的解析式;(2)如圖1,作的角平分線,交對稱軸于交點(diǎn)D,交拋物線于點(diǎn)E,求的長;(3)如圖2,在(2)的條件下,點(diǎn)F是線段上的一動點(diǎn)(點(diǎn)F不與點(diǎn)O和點(diǎn)B重合,連接,將沿折疊,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn),與的重疊部分為,請?zhí)骄?,在坐?biāo)平面內(nèi)是否存在一點(diǎn)H,使以點(diǎn)D、F、G、H為頂點(diǎn)的四邊形是矩形?若存在,請求出點(diǎn)H的坐標(biāo),若不存在,請說明理由.9.已知函數(shù),某興趣小組對其圖像與性質(zhì)進(jìn)行了探究,請補(bǔ)充完整探究過程.…-3-2-112345……-6-22-2-1-2…(1)請根據(jù)給定條件直接寫出的值;(2)如圖已經(jīng)畫出了該函數(shù)的部分圖像,請你根據(jù)上表中的數(shù)據(jù)在平面直角坐標(biāo)系中描點(diǎn)、連線,補(bǔ)充該函數(shù)圖像,并寫出該函數(shù)的一條性質(zhì);(3)若,結(jié)合圖像,直接寫出的取值范圍.10.如圖,拋物線y=ax2+bx+4交x軸于A(﹣3,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第一象限內(nèi)拋物線上的一個動點(diǎn),點(diǎn)P的橫坐標(biāo)為m,過點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,PM交BC于點(diǎn)Q.(1)求此拋物線的表達(dá)式:(2)過點(diǎn)P作PN⊥BC,垂足為點(diǎn)N,請用含m的代數(shù)式表示線段PN的長,并求出當(dāng)m為何值時PN有最大值,最大值是多少?(3)試探究點(diǎn)P在運(yùn)動過程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請求出此時點(diǎn)Q的坐標(biāo),若不存在,請說明理由.二、中考幾何壓軸題11.(性質(zhì)探究)如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AE平分∠BAC,交BC于點(diǎn)E.作DF⊥AE于點(diǎn)H,分別交AB,AC于點(diǎn)F,G.(1)判斷△AFG的形狀并說明理由.(2)求證:BF=2OG.(遷移應(yīng)用)(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時,求的值.(拓展延伸)(4)若DF交射線AB于點(diǎn)F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時,請直接寫出tan∠BAE的值.12.△ABC中,∠BAC=α°,AB=AC,D是BC上一點(diǎn),將AD繞點(diǎn)A順時針旋轉(zhuǎn)α°,得到線段AE,連接BE.(1)(特例感知)如圖1,若α=90,則BD+BE與AB的數(shù)量關(guān)系是.(2)(類比探究)如圖2,若α=120,試探究BD+BE與AB的數(shù)量關(guān)系,并證明.(3)(拓展延伸)如圖3,若α=120,AB=AC=4,BD=,Q為BA延長線上的一點(diǎn),將QD繞點(diǎn)Q順時針旋轉(zhuǎn)120°,得到線段QE,DE⊥BC,求AQ的長.13.(問題情境)在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點(diǎn)P為直線BC上一動點(diǎn)(不與點(diǎn)B、C重合),連接AP,將線段PA繞點(diǎn)P順時針旋轉(zhuǎn)得到線段PQ旋轉(zhuǎn)角為α,連接CQ.(特例分析)(1)當(dāng)α=90°,點(diǎn)P在線段BC上時,過P作PF∥AC交直線AB于點(diǎn)F,如圖①,易得圖中與△APF全等的一個三角形是,∠ACQ=°.(拓展探究)(2)當(dāng)點(diǎn)P在BC延長線上,AB:AC=m:n時,如圖②,試求線段BP與CQ的比值;(問題解決)(3)當(dāng)點(diǎn)P在直線BC上,α=60°,∠APB=30°,CP=4時,請直接寫出線段CQ的長.14.探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系;②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點(diǎn)D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長.15.等腰△ABC,AB=AC,∠BAC=120°,AF⊥BC于F,將腰AB繞點(diǎn)A逆時針旋轉(zhuǎn)至AB′,記旋轉(zhuǎn)角為α,連接BB′,過C作CE垂直于直線BB′,垂足為E,連接CB′.(1)問題發(fā)現(xiàn):如圖1,當(dāng)時,的度數(shù)為_______;連接EF,則的值為________.(2)拓展探究:當(dāng),且時,①(1)中的兩個結(jié)論是否仍然成立?如果成立,請僅就圖2的情形進(jìn)行證明;如果不成立,請說明理由;②解決問題:當(dāng)A,E,F(xiàn)三點(diǎn)共線時,請直接寫出的值.16.綜合與實(shí)踐數(shù)學(xué)活動課上,老師讓同學(xué)們結(jié)合下述情境,提出一個數(shù)學(xué)問題:如圖1,四邊形ABCD是正方形,四邊形BEDF是矩形.探究展示:“興趣小組”提出的問題是:“如圖2,連接CE.求證:AE⊥CE.”并展示了如下的證明方法:證明:如圖3,分別連接AC,BD,EF,AF.設(shè)AC與BD相交于點(diǎn)O.∵四邊形ABCD是正方形,∴OA=OC=AC,OB=OD=BD,且AC=BD.又∵四邊形BEDF是矩形,∴EF經(jīng)過點(diǎn)O,∴OE=OF=EF,且EF=BD.∴OE=OF,OA=OC.∴四邊形AECF是平行四邊形.(依據(jù)1)∵AC=BD,EF=BD,∴AC=EF.∴四邊形AECF是矩形.(依據(jù)2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述證明過程中“依據(jù)1”“依據(jù)2”分別是什么?拓展再探:(2)“創(chuàng)新小組”受到“興趣小組”的啟發(fā),提出的問題是:“如圖4,分別延長AE,F(xiàn)B交于點(diǎn)P,求證:EB=PB.”請你幫助他們寫出該問題的證明過程.(3)“智慧小組”提出的問題是:若∠BAP=30°,AE=,求正方形ABCD的面積.請你解決“智慧小組”提出的問題.17.(問題探究)(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B,D,E在同一直線上,連接AD,BD.①請?zhí)骄緼D與BD之間的位置關(guān)系?并加以證明.②若AC=BC=,DC=CE=,求線段AD的長.(拓展延伸)(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.將△DCE繞點(diǎn)C在平面內(nèi)順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點(diǎn)B,D,E在同一直線上時,畫出圖形,并求線段AD的長.18.綜合與實(shí)踐背景閱讀:“旋轉(zhuǎn)”即物體繞一個點(diǎn)或一個軸做圓周運(yùn)動.在中國古典專著《百喻經(jīng)·口誦乘船法而不解用喻》中記載:“船盤回旋轉(zhuǎn),不能前進(jìn).”而圖形旋轉(zhuǎn)即:在平面內(nèi),將一個圖形繞一點(diǎn)按某個方向轉(zhuǎn)動一個角度,這樣的運(yùn)動叫做圖形的旋轉(zhuǎn),這個定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.綜合實(shí)踐課上,“睿智”小組專門探究了正方形的旋轉(zhuǎn),情況如下:在正方形中,點(diǎn)是線段上的一個動點(diǎn),將正方形繞點(diǎn)順時針旋轉(zhuǎn)得到正方形(點(diǎn),,,分別是點(diǎn),,,的對應(yīng)點(diǎn)).設(shè)旋轉(zhuǎn)角為().操作猜想:(1)如圖1,若點(diǎn)是中點(diǎn),在正方形繞點(diǎn)旋轉(zhuǎn)過程中,連接,,,則線段與的數(shù)量關(guān)系是_______;線段與的數(shù)量關(guān)系是________.探究驗(yàn)證:(2)如圖2,在(1)的條件下,在正方形繞點(diǎn)旋轉(zhuǎn)過程中,順次連接點(diǎn),,,,.判斷四邊形的形狀,并說明理由.拓展延伸:(3)如圖3,若,在正方形繞點(diǎn)順時針旋轉(zhuǎn)的過程中,設(shè)直線交線段于點(diǎn).連接,并過點(diǎn)作于點(diǎn).請你補(bǔ)全圖形,并直接寫出的值.19.綜合與實(shí)踐動手操作利用旋轉(zhuǎn)開展教學(xué)活動,探究圖形變換中蘊(yùn)含的數(shù)學(xué)思想方法.如圖1,將等腰直角三角形的邊繞點(diǎn)順時針旋轉(zhuǎn)90°得到線段,,,連接,過點(diǎn)作交延長線于點(diǎn).思考探索(1)在圖1中:①求證:;②的面積為______;③______.拓展延伸(2)如圖2,若為任意直角三角形,.、、分別用、、表示.請用、、表示:①的面積:______;②的長:______;(3)如圖3,在中,,,,,,連接.①的面積為______;②點(diǎn)是邊的高上的一點(diǎn),當(dāng)______時,有最小值______.20.(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.【參考答案】***試卷處理標(biāo)記,請不要刪除一、二次函數(shù)壓軸題1.A解析:(1)詳見解析;(2)y=或y=;(3)當(dāng)?shù)?019次翻滾后拋物線y2的頂點(diǎn)P的對應(yīng)點(diǎn)坐標(biāo)為(4039,3).【分析】(1)由Rt△ABC中AD是斜邊BC的中線可得AD=CD,由拋物線對稱性可得AD=AC,即證得△ACD是等邊三角形.(2)設(shè)拋物線頂點(diǎn)為G,根據(jù)正拋物線定義得△EFG是等邊三角形,又易求E、F坐標(biāo),即能求G點(diǎn)坐標(biāo).由于不確定點(diǎn)G縱坐標(biāo)的正負(fù)號,故需分類討論,再利用頂點(diǎn)式求拋物線解析式.(3)根據(jù)題意求出拋物線y2的解析式,并按題意求出P、M、N的坐標(biāo),得到等邊△PMN,所以當(dāng)△PMN翻滾時,每3次為一個周期,點(diǎn)P回到x軸上方,且橫坐標(biāo)每多一個周期即加6,其規(guī)律為當(dāng)翻滾次數(shù)n能被3整除時,橫坐標(biāo)為:+n×2=(2n+1).2019能被3整除,代入即能求此時點(diǎn)P坐標(biāo).【詳解】解:(1)證明:∠BAC=90°,點(diǎn)D是BC的中點(diǎn)∴AD=BD=CD=BC∵拋物線以A為頂點(diǎn)與x軸交于D、C兩點(diǎn)∴AD=AC∴AD=AC=CD∴△ACD是等邊三角形∴以A為頂點(diǎn)與x軸交于D、C兩點(diǎn)的拋物線是正拋物線.(2)∵E(1,0)且EF=2,點(diǎn)F在x軸上且E在F的左邊∴F(3,0)∵一條經(jīng)過x軸的兩點(diǎn)E、F的拋物線為正拋物線,設(shè)頂點(diǎn)為G∴△EFG是等邊三角形∴xG=①當(dāng)G(2,)時,設(shè)拋物線解析式為y=a(x﹣2)2+把點(diǎn)E(1,0)代入得:a+=0∴a=﹣∴y=﹣(x﹣2)2+②當(dāng)G(2,﹣)時,設(shè)拋物線解析式為y=a(x﹣2)2﹣把點(diǎn)E(1,0)代入得:a﹣=0∴a=∴y=(x﹣2)2﹣綜上所述,這條拋物線的解析式為y=﹣(x﹣2)2+或y=(x﹣2)2﹣(3)∵拋物線y1=﹣x2+2x+9=﹣(x﹣)2+12∴y1向下平移9個單位后得拋物線y2=﹣(x﹣)2+3∴P(,3),M(0,0),N(2,0)∴PM=MN=PN=2∴△PMN是等邊三角形∴第一次翻滾頂點(diǎn)P的坐標(biāo)變?yōu)镻1(4,0),第二次翻滾得P2與P1相同,第三次翻滾得P3(7,3)即每翻滾3次為一個周期,當(dāng)翻滾次數(shù)n能被3整除時,點(diǎn)P縱坐標(biāo)為3,橫坐標(biāo)為:+n×2=(2n+1)∵2019÷3=673∴(2×2019+1)×=4039∴當(dāng)?shù)?019次翻滾后拋物線y2的頂點(diǎn)P的對應(yīng)點(diǎn)坐標(biāo)為(4039,3).【點(diǎn)睛】本題考查了新定義的理解、性質(zhì)運(yùn)用,二次函數(shù)的圖象與性質(zhì),直角三角形和等邊三角形的性質(zhì).第(3)題的解題關(guān)鍵是發(fā)現(xiàn)等邊△PMN每3次翻滾看作一個周期,點(diǎn)P對應(yīng)點(diǎn)坐標(biāo)的特征,是規(guī)律探索的典型題.2.B解析:(1)(2);(3)時,存在點(diǎn),使得四邊形為菱形,理由見解析【分析】(1)因?yàn)?,所以,將代入得關(guān)于b和c的二元一次方程組,解方程組得到b和c即可求得原拋物線的解析式;(2)連接,延長與軸交于點(diǎn),根據(jù)題(1)可求出點(diǎn)B、C的坐標(biāo),繼而求出直線BC的解析式及點(diǎn)E的坐標(biāo),根據(jù)題意易知四邊形是平行四邊形,繼而可知,由此可知ME=10,繼而即可求解點(diǎn)M的坐標(biāo);(3)如圖,過點(diǎn)作軸于點(diǎn),當(dāng)平行四邊形為菱形時,應(yīng)有,故點(diǎn)在之間,繼而可證根據(jù)相似三角形的性質(zhì)可得代入數(shù)據(jù)即可求解.【詳解】解:(1)∵,∴將代入得:解得:∴原拋物線的函數(shù)表達(dá)式為:;(2)連接,并延長與軸交于點(diǎn),二次函數(shù)的項點(diǎn)為直線的解析式為:拋物線繞點(diǎn)旋轉(zhuǎn)四邊形是平行四邊形,(3)如圖,過點(diǎn)作軸于點(diǎn)當(dāng)平行四邊形為菱形時,應(yīng)有,故點(diǎn)在之間,當(dāng)時,即二次函數(shù)的頂點(diǎn)為,,∴,所以時,存在點(diǎn),使得四邊形為菱形.【點(diǎn)睛】本題考查二次函數(shù)的綜合應(yīng)用,涉及到平行四邊形的性質(zhì)、菱形的性質(zhì),難度較大,解題的關(guān)鍵是善于將函數(shù)問題轉(zhuǎn)化為方程問題,善于利用幾何圖形的有關(guān)性質(zhì)及二次函數(shù)的性質(zhì),注意挖掘題目中的隱藏條件.3.D解析:(1)y=3x+3,y=﹣x2+2x+3,頂點(diǎn)D的坐標(biāo)為(1,4);(2)四邊形PMAC的面積的最大值為,此時點(diǎn)P的坐標(biāo)為(,);(3)點(diǎn)Q的坐標(biāo)為(2,3)或(1,﹣3)或(1,﹣3).【分析】(1)先求出點(diǎn)C坐標(biāo),然后利用待定系數(shù)法即可求出直線AC及拋物線的解析式,把拋物線的一般式轉(zhuǎn)化為頂點(diǎn)式即可求出D點(diǎn)的坐標(biāo);(2)先根據(jù)待定系數(shù)法求出直線BD的解析式,設(shè)點(diǎn)P的橫坐標(biāo)為p,然后根據(jù)S四邊形PMAC=S△OAC+S梯形OMPC即可得出S四邊形PMAC與p的關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)解答即可;(3)由題意得PQ∥AC且PQ=AC,設(shè)點(diǎn)P的坐標(biāo)為(x,0),當(dāng)點(diǎn)Q在x軸上方時,則點(diǎn)Q的坐標(biāo)為(x+1,3),把點(diǎn)Q的坐標(biāo)代入拋物線的解析式即可求出x,進(jìn)而可得點(diǎn)Q坐標(biāo);當(dāng)點(diǎn)Q在x軸下方時,則點(diǎn)Q的坐標(biāo)為(x﹣1,﹣3),同樣的方法求解即可.【詳解】(1)∵拋物線y=﹣ax2+bx+3與y軸交于點(diǎn)C,∴點(diǎn)C(0,3),設(shè)直線AC的解析式為y=k1x+b1(k1≠0).∵點(diǎn)A(﹣1,0),點(diǎn)C(0,3),∴,解得:,∴直線AC的解析式為y=3x+3.∵拋物線y=﹣ax2+bx+3與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),∴,解得:,∴拋物線的解析式為y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴頂點(diǎn)D的坐標(biāo)為(1,4);(2)設(shè)直線BD的解析式為y=kx+b.∵點(diǎn)B(3,0),點(diǎn)D(1,4),∴,得,∴直線BD的解析式為y=﹣2x+6.∵P為線段BD上的一個動點(diǎn),∴設(shè)點(diǎn)P的坐標(biāo)為(p,﹣2p+6).∵OA=1,OC=3,OM=p,PM=﹣2p+6,∴S四邊形PMAC=S△OAC+S梯形OMPC=﹣p2p=﹣(p)2,∵1<p<3,∴當(dāng)p時,四邊形PMAC的面積取得最大值為,此時點(diǎn)P的坐標(biāo)為(,);(3)∵直線l∥AC,以點(diǎn)A、P、Q、C為頂點(diǎn)的四邊形是平行四邊形,∴PQ∥AC且PQ=AC.設(shè)點(diǎn)P的坐標(biāo)為(x,0),由A(﹣1,0),C(0,3),當(dāng)點(diǎn)Q在x軸上方時,則點(diǎn)Q的坐標(biāo)為(x+1,3),此時,﹣(x+1)2+2(x+1)+3=3,解得:x1=﹣1(舍去),x2=1,∴點(diǎn)Q的坐標(biāo)為(2,3);當(dāng)點(diǎn)Q在x軸下方時,則點(diǎn)Q的坐標(biāo)為(x﹣1,﹣3),此時,﹣(x﹣1)2+2(x﹣1)+3=﹣3,整理得:x2﹣4x﹣3=0,解得:x1=2,x2=2,∴點(diǎn)Q的坐標(biāo)為(1,﹣3)或(1,﹣3),綜上所述:點(diǎn)Q的坐標(biāo)為(2,3)或(1,﹣3)或(1,﹣3).【點(diǎn)睛】本題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)和一元二次方程的解法等知識,綜合性強(qiáng)、具有一定的難度,屬于中考壓軸題,熟練掌握二次函數(shù)的圖象與性質(zhì)、靈活應(yīng)用相關(guān)知識是解題的關(guān)鍵.4.(1);(2)如圖所示,見解析;性質(zhì):函數(shù)的圖象關(guān)于直線對稱;或:當(dāng)或時,函數(shù)有最小值;(3)①;②或.【分析】(1)將,;,;,代入,得到:,,,即可求解析式為;(2)描點(diǎn)法畫出函數(shù)圖象,函數(shù)關(guān)于對稱;(3)①從圖象可知:當(dāng)時,,時直線與函數(shù)有三個交點(diǎn);②與的交點(diǎn)為或,結(jié)合圖象,的解集為.【詳解】解:(1)將,;,;,代入,得到:,解得,故答案為.(2)如圖:函數(shù)關(guān)于直線對稱,(3)①當(dāng)時,,時直線與函數(shù)有三個交點(diǎn),故答案為1;②與的交點(diǎn)為或或x=3,結(jié)合圖象,的解集為或,故答案為或.【點(diǎn)睛】本題類比函數(shù)探究過程探究絕對值函數(shù)與不等式組關(guān)系;能夠準(zhǔn)確的畫出函數(shù)圖象,從函數(shù)圖象中獲取信息,數(shù)形結(jié)合解題是關(guān)鍵.5.A解析:(1)A(﹣3,0),y=﹣x+;(2)①點(diǎn)D落在直線l上時,t=6﹣2;②CD的最小值為.【分析】(1)解方程求出點(diǎn)A、點(diǎn)B的坐標(biāo),根據(jù)二次函數(shù)的性質(zhì)求出點(diǎn)C的坐標(biāo),利用待定系數(shù)法求出直線l的表達(dá)式;(2)①分點(diǎn)M在AO上運(yùn)動、點(diǎn)M在OB上運(yùn)動兩種情況,DN⊥x軸于N,證明△MCO≌△DMN,根據(jù)全等三角形的性質(zhì)得到MN=OC=,DN=OM=3﹣t,得到點(diǎn)D的坐標(biāo),根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出t;②根據(jù)等腰直角三角形的性質(zhì)、垂線段最短解答.【詳解】(1)當(dāng)y=0時,﹣x2﹣x+=0,解得x1=1,x2=﹣3,∵點(diǎn)A在點(diǎn)B的左側(cè),∴A(﹣3,0),B(1,0),當(dāng)x=0時,y=,即C(0,),設(shè)直線l的表達(dá)式為y=kx+b,將B,C兩點(diǎn)坐標(biāo)代入得,,解得,,則直線l的表達(dá)式為y=﹣x+;(2)①如圖1,當(dāng)點(diǎn)M在AO上運(yùn)動時,過點(diǎn)D作DN⊥x軸于N,由題意可知,AM=t,OM=3﹣t,MC⊥MD,則∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN(AAS),∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,如圖2,當(dāng)點(diǎn)M在OB上運(yùn)動時,點(diǎn)D的坐標(biāo)為:D(﹣3+t+,t﹣3)將D點(diǎn)坐標(biāo)代入直線BC的解析式y(tǒng)=﹣x+得,t﹣3=﹣×(﹣3+t+)+,t=6﹣2,即點(diǎn)D落在直線l上時,t=6﹣2;②∵△COD是等腰直角三角形,∴CM=MD,∴線段CM最小時,線段CD長度的最小,∵M(jìn)在AB上運(yùn)動,∴當(dāng)CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得,CD的最小值為.【點(diǎn)睛】此題主要考查二次函數(shù)綜合,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)、等腰三角形的性質(zhì)特點(diǎn).6.E解析:(1)①;②2;(2);(3)【分析】(1)①把點(diǎn)E(-1,3)代入求出m的值即可;②先求出直線EF的解析式,設(shè)出點(diǎn)M的坐標(biāo),得到MN的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求解即可;(2)寫出拋物線的頂點(diǎn)式,根據(jù)平移規(guī)律即可得到的頂點(diǎn)式,進(jìn)而得到的頂點(diǎn)坐標(biāo),即,消去,得到與的函數(shù)關(guān)系式,再由即可求得的取值范圍;(3)求出拋物線怛過點(diǎn)A(2,-3),函數(shù)H的圖象恒過點(diǎn)B(2,-4),從圖象可知兩函數(shù)圖象的交點(diǎn)P應(yīng)在A,B之間,即點(diǎn)P的縱坐標(biāo)在A,B點(diǎn)的縱坐標(biāo)之間,從而可得結(jié)論.【詳解】解:(1)①∵拋物線經(jīng)過點(diǎn)E(-1,3)∴∴∴拋物線的解析式為:②如圖,∵點(diǎn)F為拋物線的最低點(diǎn),∴∴設(shè)直線EF的解析式為:把E(-1,3),F(xiàn)(1,-5)代入得,解得,∴直線EF的解析式為:設(shè),則∴∵∴當(dāng)時,MN有最大值,最大值為2;(2)∵拋物線∴平移后的拋物線∴拋物線的頂點(diǎn)坐標(biāo)為∴∴∴∵∴∴∴與的函數(shù)關(guān)系式為:(3)如圖,函數(shù)的圖象為射線,時,;時,∴函數(shù)H的圖象恒過點(diǎn)(2,-4)∵拋物線,當(dāng)時,;當(dāng)時,;∴拋物線G恒過點(diǎn)A(2,-3)由圖象可知,若拋物線G與函數(shù)H的圖象有交點(diǎn)P,則有∴點(diǎn)P縱坐標(biāo)的取值范圍為:【點(diǎn)睛】本題考查了二次函數(shù)綜合題,涉及到待定系數(shù)法求解析式、二次函數(shù)的性質(zhì)和數(shù)形結(jié)合思想等知識,熟練運(yùn)用二次函數(shù)的性質(zhì)解決問題是本題的關(guān)鍵.7.D解析:(1),點(diǎn)D的坐標(biāo)為;(2)存在,.【分析】(1)將三點(diǎn)坐標(biāo)代入,利用待定系數(shù)法可求出拋物線L的表達(dá)式,再由拋物線對稱軸公式可求出點(diǎn)D的坐標(biāo);(2)根據(jù)題意可求得拋物線的表達(dá)式,設(shè)點(diǎn)P的橫坐標(biāo)為m,則可由已知分別表示出點(diǎn)Q、M、N的坐標(biāo),利用正方形的性質(zhì)則可列出方程,求解后即可得出點(diǎn)P的橫坐標(biāo).【詳解】解:(1)將代入得:,解得,∴該拋物線L的表達(dá)式為:;∵拋物線的頂點(diǎn)為D,∴當(dāng)時,,∴點(diǎn)D的坐標(biāo)為;(2)存在;如圖所示:∵拋物線與拋物線L關(guān)于直線對稱,,∴,設(shè)拋物線的表達(dá)式為,將代入得,∴拋物線的表達(dá)式為設(shè)點(diǎn)P的橫坐標(biāo)為m,∵PQ∥y軸,則Q的橫坐標(biāo)為m,∵點(diǎn)P、Q關(guān)于拋物線L的對稱軸對稱點(diǎn)分別為M、N.∴M、N的橫坐標(biāo)為5-m.∴PM=5-m-m=5-2m.∵點(diǎn)P的縱坐標(biāo)為,點(diǎn)Q的縱坐標(biāo)為,∴PQ=()-()=,當(dāng)PM=PQ時,四邊形為正方形,∴解得,∵P是拋物線L的B、M段上的一點(diǎn),∴m<5-m,解得m<.∴.∴點(diǎn)P的橫坐標(biāo)為.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與性質(zhì),熟練掌握待定系數(shù)法及二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.8.D解析:(1);(2);(3)存在,;;.【分析】(1)利用頂點(diǎn)式,求出拋物線的解析式即可;(2)求出點(diǎn)D的坐標(biāo),再求出直線BE的解析式,構(gòu)建方程組確定點(diǎn)E的坐標(biāo),即可得出結(jié)論;(3)分三種情形:當(dāng)時,點(diǎn)G與點(diǎn)C重合,再利用平移的性質(zhì)求解,當(dāng)時,且點(diǎn)G在上時,求得;,即可得出結(jié)論,當(dāng),且點(diǎn)G在上時,利用平移的性質(zhì)求解即可.【詳解】(1)∵拋物線的頂點(diǎn)C,∴設(shè)拋物線的解析式為,把A代入可得,∴拋物線的解析式為;(2)如圖1中,設(shè)拋物線的對稱軸交軸于F,令則解得:,,∴,∴,∵BE平分,∴,∴,∴直線BD的解析式為,由,解得,或,∴,∴;(3)①如圖所示:當(dāng)時,∵拋物線的頂點(diǎn)C,點(diǎn)H在第三象限,點(diǎn)與點(diǎn)C重合,此時;,由平移性質(zhì)得,②如圖所示:當(dāng)且點(diǎn)在上時,則點(diǎn)H在第三象限,此時;,由平移性質(zhì)得③如圖所示:當(dāng)且點(diǎn)在上時,點(diǎn)H在第三象限,同理可得:,,,由平移性質(zhì)得,綜上所述,滿足條件的點(diǎn)H的坐標(biāo)為或或.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),矩形的判定和性質(zhì),銳角三角函數(shù)的應(yīng)用,等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題.9.(1),,;(2)見詳解;(3)x的取值范圍是:3≤x<0或1≤x≤2.【分析】(1)先將(-1,2)和(1,-2)代入函數(shù)y=a(x-1)2++1中,列方程組解出可得a和b的值,寫出函數(shù)解析式,計算當(dāng)x=4時m的值即可;(2)描點(diǎn)并連線畫圖,根據(jù)圖象寫出一條性質(zhì)即可;(3)畫y=x-3的圖象,根據(jù)圖象可得結(jié)論.【詳解】解:(1)把(-1,2)和(1,-2)代入函數(shù)y=a(x-1)2++1中得:,解得:,∴y=(a≠0),當(dāng)x=4時,m=;(2)如圖所示,性質(zhì):當(dāng)x>2時,y隨x的增大而減?。ù鸢覆晃ㄒ唬?;(3)∵a(x1)2+≥x4,∴a(x1)2++1≥x3,如圖所示,由圖象得:x的取值范圍是:3≤x<0或1≤x≤2.【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)解析式,描點(diǎn),畫函數(shù)圖象,以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì),利用了數(shù)形結(jié)合思想進(jìn)行分析.10.A解析:(1);(2),當(dāng)m=2時,PN的最大值為;(3)Q(1,3)或(,)【分析】(1)由二次函數(shù)交點(diǎn)式表達(dá)式,即可求解.(2)由PN=PQsin∠PQN=(﹣m2+m+4+m﹣4)即可求解.(3)分AC=AQ、AC=CQ、CQ=AQ三種情況,當(dāng)AC=AQ時,構(gòu)造直角三角形AMQ利用勾股定理可求坐標(biāo),AC=CQ時,先求BQ再求MB,即可得到坐標(biāo),CQ=AQ時,聯(lián)立解得不合題意.【詳解】解:(1)由二次函數(shù)交點(diǎn)式表達(dá)式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12)=ax2﹣ax﹣12a,即:﹣12a=4,解得:a=﹣,則拋物線的表達(dá)式為,(2)設(shè)點(diǎn)P(m,﹣m2+m+4),則點(diǎn)Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQsin∠PQN=(﹣m2+m+4+m﹣4)=﹣(m﹣2)2+,∵﹣<0,∴PN有最大值,當(dāng)m=2時,PN的最大值為.(3)存在,理由:點(diǎn)A、B、C的坐標(biāo)分別為(﹣3,0)、(4,0)、(0,4),則AC=5,AB=7,BC=4,∠OBC=∠OCB=45°,將點(diǎn)B(4,0)、C(0,4)的坐標(biāo)代入一次函數(shù)表達(dá)式:y=kx+b得解得∴直線BC的解析式為y=﹣x+4…①,設(shè)直線AC的解析式為y=mx+n把點(diǎn)A(﹣3,0)、C(0,4)代入得解得∴直線AC的表達(dá)式為:y=x+4,設(shè)直線AC的中點(diǎn)為K(﹣,2),過點(diǎn)M與CA垂直直線的表達(dá)式中的k值為﹣,設(shè)過點(diǎn)K與直線AC垂直直線的表達(dá)式為y=﹣x+q把K(﹣,2)代入得2=﹣×(﹣)+q解得q=∴y=﹣x+…②,①當(dāng)AC=AQ時,如圖1,則AC=AQ=5,設(shè):QM=MB=n,則AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故點(diǎn)Q(1,3),②當(dāng)AC=CQ時,如圖1,CQ=5,則BQ=BC﹣CQ=4﹣5,則QM=MB=,故點(diǎn)Q(,).③當(dāng)CQ=AQ時,聯(lián)立①②,,解得,x=(舍去),綜上所述點(diǎn)Q的坐標(biāo)為:Q(1,3)或Q(,).【點(diǎn)睛】此題主要考查二次函數(shù)綜合,解題的關(guān)鍵是熟知待定系數(shù)法、一次函數(shù)的圖像與性質(zhì)、二次函數(shù)的圖像與性質(zhì)及等腰三角形的性質(zhì).二、中考幾何壓軸題11.(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG解析:(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG=∠OLG.首先證明OG=OL,再證明BF=2OL即可解決問題.(3)如圖3中,過點(diǎn)D作DK⊥AC于K,則∠DKA=∠CDA=90°,利用相似三角形的性質(zhì)解決問題即可.(4)設(shè)OG=a,AG=k.分兩種情形:①如圖4中,連接EF,當(dāng)點(diǎn)F在線段AB上時,點(diǎn)G在OA上.②如圖5中,當(dāng)點(diǎn)F在AB的延長線上時,點(diǎn)G在線段OC上,連接EF.分別求解即可解決問題.【詳解】(1)解:如圖1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)證明:如圖2中,過點(diǎn)O作OL∥AB交DF于L,則∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四邊形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如圖3中,過點(diǎn)D作DK⊥AC于K,則∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=?OG?DK,S2=?BF?AD,又∵BF=2OG,,∴,設(shè)CD=2x,AC=3x,則AD=,∴.(4)解:設(shè)OG=a,AG=k.①如圖4中,連接EF,當(dāng)點(diǎn)F在線段AB上時,點(diǎn)G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如圖5中,當(dāng)點(diǎn)F在AB的延長線上時,點(diǎn)G在線段OC上,連接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,綜上所述,tan∠BAE的值為或.【點(diǎn)睛】本題是一道綜合題,主要涉及到等腰三角形的判定及其性質(zhì)、全等三角形的判定和性質(zhì)、三角形中位線定理、相似三角形的判定及其性質(zhì)、勾股定理的應(yīng)用等知識點(diǎn),解題的關(guān)鍵是綜合運(yùn)用所學(xué)到的相關(guān)知識.12.(1);(2),見解析;(3)【分析】(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;(2)過點(diǎn)A解析:(1);(2),見解析;(3)【分析】(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;(2)過點(diǎn)A作AH⊥BC,根據(jù)∠BAC=120°,AB=AC可得∠ABC=30°,,則,由(1)可知BD+BE=BC,由此即可得;(3)過Q點(diǎn)作QF∥AC交BC延長線于點(diǎn)F,先證∠BQF=120°,BQ=QF,進(jìn)而可由(2)同理可知,△QBE≌△QFD,,進(jìn)而可證得,再根據(jù)cos∠EBD==cos60°=可求得,進(jìn)而求得,最后根據(jù)AQ=BQ-AB即可得到答案.【詳解】解:(1)理由如下:∵∠EAD=∠BAC=90°∴∠EAB=∠DAC在△ABE與△ACD中,∴△ABE≌△ACD(SAS)∴BE=CD,∵BD+CD=BC∴BD+BE=BC∵在Rt△ABC中,∠BAC=90°,AB=AC,∴BC=∴BD+BE=;(2)結(jié)論:,理由如下:過點(diǎn)A作AH⊥BC,∵∠BAC=120°,AB=AC∴∠ABC=30°,在Rt△ABH中,cos∠ABH==cos30°=∴BH=AB,∴由(1)同理可知BD+BE=BC,∴;(3)過Q點(diǎn)作QF∥AC交BC延長線于點(diǎn)F,∴∴∠QFC=∠QBF=30°,∠BQF=120°∴BQ=QF由(2)同理可知,△QBE≌△QFD,∴cos∠EBD==cos60°=∵,∴AQ=BQ-AB=.【點(diǎn)睛】本題考查了全等三角形的判定及性質(zhì),等腰直角三角形的性質(zhì),解直角三角形的應(yīng)用,熟練掌握相關(guān)圖形的判定及性質(zhì)以及能夠作出正確的輔助線是解決本題的關(guān)鍵.13.(1)△PQC,90;(2);(3)線段CQ的長為2或8.【分析】(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明AP=PQ,∠PAF解析:(1)△PQC,90;(2);(3)線段CQ的長為2或8.【分析】(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明AP=PQ,∠PAF=∠QPC,從而可得結(jié)論,(2)過P作PF∥AC,交BA的延長線于F,則,再證明△AFP≌△PCQ,利用△ABC∽△FBP的性質(zhì)可得答案,(3)分情況討論:當(dāng)P在CB的延長線上時,證明△APC≌△QPC,利用等邊三角形的性質(zhì)可得答案,當(dāng)P在BC的延長線上時,連接AQ,利用等邊三角形的性質(zhì),證明△ACQ≌△PCQ,從而可得答案.【詳解】解:(1)如圖①,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∵PF∥AC,∴∠BPF=∠BFP=45°,∴△BPF是等腰直角三角形,∴BF=BP,∴AF=CP,由旋轉(zhuǎn)可得,AP=PQ,∠APQ=90°,而∠BPF=45°,∴∠QPC=45°﹣∠APF,又∵∠PAF=∠PFB﹣∠APF=45°﹣∠APF,∴∠PAF=∠QPC,∴△APF≌△PQC,∴∠PCQ=∠AFP=135°,又∵∠ACB=45°,∴∠ACQ=90°,故答案為:△PQC,90;(2)如圖②,過P作PF∥AC,交BA的延長線于F,則,又∵AB=BC,∴AF=CP,又∵∠FAP=∠ABC+∠APB=α+∠APB,∠CPQ=∠APQ+∠APB=α+∠APB,∴∠FAP=∠CPQ,由旋轉(zhuǎn)可得,PA=PQ,∴△AFP≌△PCQ,∴FP=CQ,∵PF∥AC,∴△ABC∽△FBP,∴,∴(3)如圖,當(dāng)P在CB的延長線上時,∠CPQ=∠APQ﹣∠APB=60°﹣30°=30°,∴∠APC=∠QPC,又∵AP=QP,PC=PC,∴△APC≌△QPC,∴CQ=AC,又∵BA=BC,∠ABC=60°,∴△ABC是等邊三角形,∴∠ABC=60°,∠BAP=∠ABC﹣∠APB=30°,∴BP=AB=BC=PC=2,∴QC=AC=BC=2;如圖,當(dāng)P在BC的延長線上時,連接AQ,由旋轉(zhuǎn)可得,AP=QP,∠APQ=∠ABC=60°,∴△APQ是等邊三角形,∴AQ=PQ,∠APQ=60°=∠AQP,又∵∠APB=30°,∠ACB=60°,∴∠CAP=30°,∠CPQ=90°,∴∠CAP=∠APA,∴AC=PC,∴△ACQ≌△PCQ,∴∠AQC=∠PQC=∠AQP=30°,∴Rt△PCQ中,CQ=2CP=8.綜上所述,線段CQ的長為2或8.【點(diǎn)睛】本題屬于相似形綜合題,主要考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形或相似三角形,利用全等三角形的對應(yīng)邊相等,相似三角形的對應(yīng)邊成比例進(jìn)行推算.14.(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)作輔助線,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)如圖3,同理作旋轉(zhuǎn)三角形,根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3﹣x,根據(jù)勾股定理得出方程,求出x即可.【詳解】解:(1)∵把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共線,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案為:EF=BE+DF;②成立,理由:如圖2,把△ABE繞A點(diǎn)旋轉(zhuǎn)到△ADG,使AB和AD重合,則AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一條直線上,與①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如圖3,把△AEC繞A點(diǎn)旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF,則AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,設(shè)DE=x,則DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【點(diǎn)睛】本題考查了四邊形的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,運(yùn)用類比的思想;首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.15.(1)∠CB′E=60°,;(2)①兩個結(jié)論成立,理由見解析;(3)或.【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)以及直角三角形的性質(zhì)解答即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)和直解析:(1)∠CB′E=60°,;(2)①兩個結(jié)論成立,理由見解析;(3)或.【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)以及直角三角形的性質(zhì)解答即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)和直角三角形的性質(zhì)解答即可;②當(dāng)A,E,F(xiàn)三點(diǎn)共線時,分兩種情況討論,利用三角函數(shù)解答即可.【詳解】解:(1)∵AB=AC,∠BAC=120°,AF⊥BC,∴∠ABC=∠ACB=30°,BF=FC,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AB=AC=AB′,∴∠ABB′=∠AB′B==70°,∵AC=AB′,∠B′AC=120°-40°=80°,∴∠AB′C==50°,∴∠CB′E=180°-70°-50°=60°,連接EF,∵BF=FC,則EF為直角三角形BEC斜邊上的中線,∴EF=BF=FC,在Rt△ABF中,,∴;(2)①兩個結(jié)論成立,理由如下:連接EF,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AB=AC=AB′,等腰△ABB′中,∠BAB′=α,則∠AB′B==90°?α,等腰△AB′C中,∠CAB′=α?120°,則∠AB′C==150°?α,∴;∵AB=AC,AF⊥BC.∴∠FAC=60°,Rt△CEB′中,=sin60°=,Rt△CFA中,=sin60°=,∴,∵∠FCE=∠ACB′=30°+∠ACE,∴△CEF~△CB′A∴;②當(dāng)A,E,F(xiàn)三點(diǎn)共線時,分以下兩種情況討論,(Ⅰ)當(dāng)點(diǎn)E在FA的延長線上時,如圖,由①可知,∠B'=60°,∵CE⊥BB',而BC=2EF=2BF,EB=CE,設(shè)BF=x,則EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB+B'E=,∴;(Ⅱ)當(dāng)點(diǎn)E在AF的延長線上時,如圖,同理可得,∠CB'E=60°,BC=2EF=2BF,∵CE⊥BB',∴∠CEB'=∠CEB=90°,EB=CE,設(shè)BF=x,則EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB-B'E=,∴;綜上,的值為或.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、特殊角的三角函數(shù)值等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.16.(1)依據(jù)1:對角線互相平分的四邊形是平行四邊形,依據(jù)2:對角線相等的平行四邊形是矩形;(2)見解析;(3)4【分析】(1)借助問題情景即可得出結(jié)論;(2)連接CE,先根據(jù)已證結(jié)論及正方形的性解析:(1)依據(jù)1:對角線互相平分的四邊形是平行四邊形,依據(jù)2:對角線相等的平行四邊形是矩形;(2)見解析;(3)4【分析】(1)借助問題情景即可得出結(jié)論;(2)連接CE,先根據(jù)已證結(jié)論及正方形的性質(zhì)得出AB=BC,∠1=∠4,再由矩形性質(zhì)證得∠PBA=∠EBC,得出△PBA≌△EBC,即可得出結(jié)論;(3)過點(diǎn)B作BM⊥AP,垂足為M.結(jié)合(2)所得結(jié)論利用等腰直角三角形的性質(zhì)可得BM=PM=ME,設(shè)BM=ME=x,則AM=x+-1.則根據(jù)三角函數(shù)解直角三角形求出x=1,再由直角三角形的性質(zhì)求出正方形的邊長,即可得出結(jié)果.【詳解】解:(1)依據(jù)1:對角線互相平分的四邊形是平行四邊形.依據(jù)2:對角線相等的平行四邊形是矩形.(2)證明:連接CE,由題意得,∠CEA=90°,∴∠1+∠2=180°-∠AEC=90°.∵四邊形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠3+∠4=180°-∠ABC=90°.∵∠2=∠3.∴∠1=∠4.∵四邊形EBFD是矩形,∴∠EBF=90°.∴∠PBE=180°-∠EBF=90°.∴∠PBE=∠ABC.∴∠PBE+∠EBA=∠ABC+∠EBA.即∠PBA=∠EBC.∴△PBA≌△EBC.∴PB=EB.(3)解:過點(diǎn)B作BM⊥AP,垂足為M.由(2)可知,PB=BE,∠PBE=90°.∴BM=PM=ME.設(shè)BM=ME=x,則AM=x+-1.∵在Rt△ABM中,∠BAM=30°.∴AB=2BM,tan∠BAM=,解得x=1.∴AB=2,∴S正方形ABCD=2×2=4.【點(diǎn)睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定與性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握特殊四邊形、全等三角形及三角函數(shù)等相關(guān)知識點(diǎn)是解題的關(guān)鍵.17.(1)①,證明見解析;②4;(2)畫圖見解析,或【分析】(1)①由“”可證,可得,可得;②過點(diǎn)作于點(diǎn),由勾股定理可求,,的長,即可求的長;(2)分點(diǎn)在左側(cè)和右側(cè)兩種情況討論,根據(jù)勾股定理和相似解析:(1)①,證明見解析;②4;(2)畫圖見解析,或【分析】(1)①由“”可證,可得,可得;②過點(diǎn)作于點(diǎn),由勾股定理可求,,的長,即可求的長;(2)分點(diǎn)在左側(cè)和右側(cè)兩種情況討論,根據(jù)勾股定理和相似三角形的性質(zhì)可求解.【詳解】解:(1)和均為等腰直角三角形,,,,,,且,,,,,,故答案為:;②如圖,過點(diǎn)作于點(diǎn),,,,,,,故答案為:4;(2)若點(diǎn)在右側(cè),如圖,過點(diǎn)作于點(diǎn),,,,,.,,,,,,,,,,,即,,,,,若點(diǎn)在左側(cè),,,,,.,,,,,,,,,,,,即,,,,.【點(diǎn)睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì)等知識點(diǎn),關(guān)鍵是添加恰當(dāng)輔助線.18.(1);;(2)矩形,見解析;(3)見解析,.【分析】(1)如圖,連接OA、OA′、OD、OD′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根據(jù)勾股定理可得OA=O解析:(1);;(2)矩形,見解析;(3)見解析,.【分析】(1)如圖,連接OA、OA′、OD、OD′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根據(jù)勾股定理可得OA=OD,利用SAS可證明△AOA′≌△DOD′,根據(jù)全等三角形的性質(zhì)可得AA′=DD′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BOB′=,根據(jù)可得△OAA′∽△OBB′,根據(jù)相似三角形的性質(zhì)即可得答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,,根據(jù)點(diǎn)是中點(diǎn)即可得出,根據(jù)對角線相等且互相平分的四邊形是矩形即可證明四邊形是矩形;(3)根據(jù)題意,補(bǔ)全圖形,連接OA、OA′,作AM⊥BP于M,A′N⊥BP于N,根據(jù)勾股定理可得,根據(jù)平角的定義及直角三角形兩銳角互余的性質(zhì)可得,利用AAS可證明△ABM≌△A′B′N,可得AM=A′N,利用AAS可證明△APM≌△A′PN,可得,根據(jù)等腰三角形“三線合一”的性質(zhì)可得∠A′OP=∠AOA′=,∠QOB′=,根據(jù)角的和差關(guān)系可得∠POQ=∠A′OB′,即可證明△OQP∽△OB′A′,根據(jù)相似三角形的性質(zhì)即可得答案.【詳解】(1)如圖,連接OA、OA′、OD、OD′,∵將正方形繞點(diǎn)順時針旋轉(zhuǎn)得到正方形,旋轉(zhuǎn)角為,∴OA=OA′、OD=OD′,∠AOA′=∠DOD′=,∴△AOA′≌△DOD′,∴AA′=DD′,∵點(diǎn)是中點(diǎn),∴OB=,∴OA=,∵將正方形繞點(diǎn)順時針旋轉(zhuǎn)得到正方形,旋轉(zhuǎn)角為,∴∠BOB′=∠AOA′=,∵,∴△OAA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論