江蘇省六校聯(lián)盟2025年高二上數(shù)學期末調研試題含解析_第1頁
江蘇省六校聯(lián)盟2025年高二上數(shù)學期末調研試題含解析_第2頁
江蘇省六校聯(lián)盟2025年高二上數(shù)學期末調研試題含解析_第3頁
江蘇省六校聯(lián)盟2025年高二上數(shù)學期末調研試題含解析_第4頁
江蘇省六校聯(lián)盟2025年高二上數(shù)學期末調研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省六校聯(lián)盟2025年高二上數(shù)學期末調研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點是A. B.C. D.2.甲、乙兩名射擊運動員進行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.983.內角A,B,C的對邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.5.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.6.已知一組數(shù)據(jù)為:2,4,6,8,這4個數(shù)的方差為()A.4 B.5C.6 D.77.對于圓上任意一點的值與x,y無關,有下列結論:①當時,r有最大值1;②在r取最大值時,則點的軌跡是一條直線;③當時,則.其中正確的個數(shù)是()A.3 B.2C.1 D.08.在棱長為1的正四面體中,點滿足,點滿足,當和的長度都為最短時,的值是()A. B.C. D.9.設為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構不成三角形10.設P為橢圓C:上一點,,分別為左、右焦點,且,則()A. B.C. D.11.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.912.若(為虛數(shù)單位),則復數(shù)在復平面內的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與,若,則實數(shù)a的值為______14.設,若,則S=________.15.已知函數(shù),則函數(shù)在上的最大值為_______16.瑞士數(shù)學家歐拉(Euler)1765年在所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,,則歐拉線的方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時,求實數(shù)a的取值范圍;若命題q為假時,求實數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實數(shù)a的取值范圍18.(12分)已知橢圓的焦距為,左、右焦點分別為,為橢圓上一點,且軸,,為垂足,為坐標原點,且(1)求橢圓的標準方程;(2)過橢圓的右焦點的直線(斜率不為)與橢圓交于兩點,為軸正半軸上一點,且,求點的坐標19.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面不計剪裁和拼接損耗,設矩形的邊長|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關于x的函數(shù)關系式,并指出定義域;(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大最大體積是多少?20.(12分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(1)證明:平面;(2)求二面角的正弦值21.(12分)已知數(shù)列的前項和為,并且滿足(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求證:22.(10分)在①;②,這兩個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.在中,內角A,B,C的對邊分別為a,b,c,設的面積為S,已知_________.(1)求的值;(2)若,求值.注:如果選擇多個條件分別解答,按第一個解答計分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先判斷焦點的位置,再從標準型中找出即得焦點坐標.【詳解】焦點在軸上,又,故焦點坐標為,故選D.【點睛】求圓錐曲線的焦點坐標,首先要把圓錐曲線的方程整理為標準方程,從而得到焦點的位置和焦點的坐標.2、A【解析】依據(jù)獨立事件同時發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A3、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C4、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B5、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.6、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計算公式,準確計算,即可求解.【詳解】由平均數(shù)的計算公式,可得,所以這4個數(shù)的方差為故選:B.7、B【解析】可以看作點到直線與直線距離之和的倍,的取值與,無關,這個距離之和與點在圓上的位置無關,圓在兩直線內部,則,的距離為,則,,對于①,當時,r有最大值1,得出結論;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,得出結論;對于③當時,則得出結論.【詳解】設,故可以看作點到直線與直線距離之和的倍,的取值與,無關,這個距離之和與點在圓上的位置無關,可知直線平移時,點與直線,的距離之和均為,的距離,即此時圓在兩直線內部,,的距離為,則,對于①,當時,r有最大值1,正確;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,正確;對于③當時,則即,解得或,故錯誤.故正確結論有2個,故選:B.8、A【解析】根據(jù)給定條件確定點M,N的位置,再借助空間向量數(shù)量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內,又,即,于是得點N在直線上,棱長為1的正四面體中,當長最短時,點M是點A在平面上的射影,即正的中心,因此,,當長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A9、D【解析】根據(jù)橢圓方程求出,然后結合橢圓定義和已知條件求出并求出,進而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構成三角形.故選:D.10、B【解析】根據(jù)橢圓的定義寫出,再根據(jù)條件即可解得答案.【詳解】根據(jù)P為橢圓C:上一點,則有,又,所以,故選:B.11、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉化與化歸思想,是一道容易題.12、A【解析】根據(jù)復數(shù)運算法則求出z=a+bi形式,根據(jù)復數(shù)的幾何意義即可求解.【詳解】,z對應的點在第一象限.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:14、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關鍵.15、【解析】利用導數(shù)單調性求出的單調性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調遞增.令,即時,函數(shù)單調遞減.所以的單調遞減區(qū)間為,的單調遞增區(qū)間為,所以在上單調遞減,在上單調遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.16、【解析】根據(jù)給定信息,利用三角形重心坐標公式求出的重心,再結合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點,,,則的重心,顯然的外心在線段AC中垂線上,設,由得:,解得:,即點,直線,化簡整理得:,所以歐拉線的方程為.故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)p為真時或,q為假時;(2){或}.【解析】(1)p為真應用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應的參數(shù)范圍.(2)由題設易得p、q一真一假,討論p、q的真假,結合(1)的結果求a的取值范圍【小問1詳解】若p真,則有實數(shù)根,∴,解得或若q為真,則,即故q為假時,實數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當p真q假時,,可得當p假q真時,,可得綜上,實數(shù)a取值范圍為或.18、(1)(2)【解析】(1)利用△∽△構造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達定理求出和,利用幾何關系可知,即可得,將韋達定理代入化簡即可求得點坐標.【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標準方程為,【小問2詳解】設直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.19、(1),;(2)時,最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導數(shù),求出V的單調性,即可得出結論【小問1詳解】連接,在中,,,設圓柱底面半徑為,則,即,,其中【小問2詳解】由及,得,列表如下:,0↗極大值↘∴當時,有極大值,也是最大值為m320、(1)證明見解析(2)【解析】(1)設,線段的中點為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標系,求出平面的一個法向量和平面的一個法向量后可求二面角的余弦值.【小問1詳解】證明:設,線段的中點為H,分別連接又因為G是的中點,所以因為四邊形為矩形,據(jù)菱形性質知,O為的中點,所以,且,所以,且,所以四邊形是平行四邊形,所以又因為平面,平面,所以平面【小問2詳解】解:據(jù)四邊形是菱形的性質知,又因為平面平面,平面,平面平面,故平面,所以以分別為x軸,y軸,以過與的交點O,且垂直于平面的直線為z軸建立空間直角坐標系如圖所示,則有,所以設平面的一個法向量,則令,則,且,所以設平面的一個法向量,則令,則,且,所以所以,所以二面角的正弦值為21、(1);(2)證明見解析.【解析】(1)利用和項可求得的通項公式,注意別漏了說明;(2)先用錯位相減法求出數(shù)列的前項和,從而可知【詳解】(1),①當時,,②由①—②可得:,且數(shù)列是首項為1,公差為2的等差數(shù)列,即(2)由(1)知數(shù)列,,則,①∴,②由①﹣②得,∴,.【點睛】本題主要考查給出的一個關系式求數(shù)列的通項公式以及用錯位相減法求數(shù)列的前n項和.22、條件選擇見解析;(1);(2).【解析】(1)若選擇①,先利用正弦定理進行邊角互化,再結合正余弦的和差角公式化簡可得,得出;若選擇②,利用余弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論