2025-2026學(xué)年浙江省溫州東甌中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁(yè)
2025-2026學(xué)年浙江省溫州東甌中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁(yè)
2025-2026學(xué)年浙江省溫州東甌中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁(yè)
2025-2026學(xué)年浙江省溫州東甌中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁(yè)
2025-2026學(xué)年浙江省溫州東甌中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025-2026學(xué)年浙江省溫州東甌中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,四棱錐中,底面是邊長(zhǎng)為的正方形,平面,為底面內(nèi)的一動(dòng)點(diǎn),若,則動(dòng)點(diǎn)的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上2.已知函數(shù)的部分圖象與軸交于點(diǎn),與軸的一個(gè)交點(diǎn)為,如圖所示,則下列說法錯(cuò)誤的是()A. B.的最小正周期為6C.圖象關(guān)于直線對(duì)稱 D.在上單調(diào)遞減3.已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),若的零點(diǎn)為,極值點(diǎn)為,則()A. B.0C.1 D.24.中國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個(gè)問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級(jí)遞減石分這些俸糧,問,每個(gè)人各分得多少俸糧?在這個(gè)問題中,正三品分得俸糧是()A.石 B.石C.石 D.石5.已知向量,,若,則()A.1 B.C. D.26.已知長(zhǎng)方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.7.在四面體中,點(diǎn)G是的重心,設(shè),,,則()A. B.C. D.8.某高校甲、乙兩位同學(xué)大學(xué)四年選修課程的考試成績(jī)等級(jí)(選修課的成績(jī)等級(jí)分為1,2,3,4,5,共五個(gè)等級(jí))的條形圖如圖所示,則甲成績(jī)等級(jí)的中位數(shù)與乙成績(jī)等級(jí)的眾數(shù)分別是()A.3,5 B.3,3C.3.5,5 D.3.5,49.已知實(shí)數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.10.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點(diǎn),則AM與平面所成角的正弦值為()A. B.C. D.11.若直線與圓只有一個(gè)公共點(diǎn),則m的值為()A. B.C. D.12.設(shè),若函數(shù),有大于零的極值點(diǎn),則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)為橢圓上的動(dòng)點(diǎn),為圓的任意一條直徑,則的最大值是__________14.若復(fù)數(shù)滿足,則_____15.設(shè)拋物線C:的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,P是C上一點(diǎn),若|PF|=5,則|PM|=__.16.已知向量,,若與垂直,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知圓臺(tái)下底面圓的直徑為,是圓上異于、的點(diǎn),是圓臺(tái)上底面圓上的點(diǎn),且平面平面,,,、分別是、的中點(diǎn).(1)證明:平面;(2)若直線上平面且過點(diǎn),試問直線上是否存在點(diǎn),使直線與平面所成的角和平面與平面的夾角相等?若存在,求出點(diǎn)的所有可能位置;若不存在,請(qǐng)說明理由.18.(12分)已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請(qǐng)說明理由19.(12分)已知拋物線:上的點(diǎn)到焦點(diǎn)的距離為(1)求拋物線的方程;(2)設(shè)縱截距為的直線與拋物線交于,兩個(gè)不同的點(diǎn),若,求直線的方程20.(12分)有1000人參加了某次垃圾分類知識(shí)競(jìng)賽,從中隨機(jī)抽取100人,將這100人的此次競(jìng)賽的分?jǐn)?shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下頻率分布直方圖.(1)求圖中a的值;(2)估計(jì)總體1000人中競(jìng)賽分?jǐn)?shù)不少于70分的人數(shù);(3)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)總體1000人的競(jìng)賽分?jǐn)?shù)的平均數(shù).21.(12分)已知各項(xiàng)均為正數(shù)的等差數(shù)列滿足,且,,構(gòu)成等比數(shù)列的前三項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域?yàn)榧螦(1)求m的值;(2)當(dāng)時(shí),的值域?yàn)榧螧,若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,設(shè),由題意,得到,,再由得到,求出點(diǎn)的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立如圖所示的空間直角坐標(biāo)系,因?yàn)榈酌媸沁呴L(zhǎng)為的正方形,則,,因?yàn)闉榈酌鎯?nèi)的一動(dòng)點(diǎn),所以可設(shè),因此,,因?yàn)槠矫?,所以,因此,所以由得,即,整理得:,表示圓,因此,動(dòng)點(diǎn)的軌跡在圓上.故選:A.【點(diǎn)睛】本題主要考查立體幾何中的軌跡問題,靈活運(yùn)用空間向量的方法求解即可,屬于??碱}型.2、D【解析】根據(jù)函數(shù)的圖象求出,再利用函數(shù)的性質(zhì)結(jié)合周期公式逆推即可求解.【詳解】因?yàn)楹瘮?shù)的圖象與軸交于點(diǎn),所以,又,所以,A正確;因?yàn)榈膱D象與軸的一個(gè)交點(diǎn)為,即,所以,又,解得,所以,所以,求得最小正周期為,B正確;,所以是的一條對(duì)稱軸,C正確;令,解得,所以函數(shù)在,上單調(diào)遞減,D錯(cuò)誤故選:D.3、C【解析】令可求得其零點(diǎn),即的值,再利用導(dǎo)數(shù)可求得其極值點(diǎn),即的值,從而可得答案【詳解】解:,當(dāng)時(shí),,即,解得;當(dāng)時(shí),恒成立,的零點(diǎn)為又當(dāng)時(shí),為增函數(shù),故在,上無極值點(diǎn);當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,時(shí),取到極小值,即的極值點(diǎn),故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點(diǎn),考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題4、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項(xiàng)和求,進(jìn)而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.5、B【解析】由向量平行,先求出的值,再由模長(zhǎng)公式求解模長(zhǎng).【詳解】由,則,即則,所以則故選:B6、A【解析】建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量為,易知平面的一個(gè)法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個(gè)法向量為,則,即,令,則,易知平面的一個(gè)法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A7、B【解析】結(jié)合重心的知識(shí)以及空間向量運(yùn)算求得正確答案.【詳解】設(shè)是中點(diǎn),.故選:B8、C【解析】將甲的所有選修課等級(jí)從低到高排列可得甲的中位數(shù),由圖可知乙的選修課等級(jí)的眾數(shù).【詳解】由條形圖可得,甲同學(xué)共有10門選修課,將這10門選修課的成績(jī)等級(jí)從低到高排序后,第5,6門的成績(jī)等級(jí)分別為3,4,故中位數(shù)為,乙成績(jī)等級(jí)的眾數(shù)為5.故選:C.9、B【解析】作出不等式組對(duì)應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對(duì)應(yīng)的可行域如圖三角形陰影部分,平行移動(dòng)直線直線,可以看到當(dāng)移動(dòng)過點(diǎn)A時(shí),在y軸上的截距最小,聯(lián)立,解得,當(dāng)且僅當(dāng)動(dòng)直線即過點(diǎn)時(shí),取得最小值為,故選:B10、B【解析】取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,不妨設(shè),則,所以,平面的一個(gè)法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B11、D【解析】利用圓心到直線的距離等于半徑列方程,化簡(jiǎn)求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個(gè)公共點(diǎn),所以直線與圓相切,所以.故選:D12、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點(diǎn)即有正根,當(dāng)有成立時(shí),顯然有,此時(shí).由,得參數(shù)a的范圍為.故選B考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)點(diǎn),則且,計(jì)算得出,再利用二次函數(shù)的基本性質(zhì)即可求得的最大值.【詳解】解:圓的圓心為,半徑長(zhǎng)為,設(shè)點(diǎn),由點(diǎn)為橢圓上的動(dòng)點(diǎn),可得:且,由為圓的任意一條直徑可得:,,,,,當(dāng)時(shí),取得最大值,即.故答案為:.14、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長(zhǎng)公式進(jìn)行計(jì)算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點(diǎn)睛】本題主要考查復(fù)數(shù)模長(zhǎng)的計(jì)算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵15、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進(jìn)而得解.【詳解】由拋物線的方程可得焦點(diǎn),準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.16、【解析】根據(jù)與垂直,可知,根據(jù)空間向量的數(shù)量積運(yùn)算可求出的值,結(jié)合向量坐標(biāo)求向量模的求法,即可得出結(jié)果.【詳解】解:與垂直,,則,解得:,,則,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在,點(diǎn)與點(diǎn)重合.【解析】(1)證明出,利用面面垂直的性質(zhì)可證得結(jié)論成立;(2)以為坐標(biāo)原點(diǎn),為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),分析可知,設(shè)點(diǎn),利用空間向量法結(jié)合同角三角函數(shù)的基本關(guān)系可得出關(guān)于的方程,解出的值,即可得出結(jié)論.【小問1詳解】證明:因?yàn)闉閳A的一條直徑,且是圓上異于、的點(diǎn),故,又因平面平面,平面平面,平面,所以平面.【小問2詳解】解:存在,理由如下:如圖,以為坐標(biāo)原點(diǎn),為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),則,,,,,,由直線平面且過點(diǎn),以及平面,得,設(shè),則,,,設(shè)平面的法向量為,則則,即,取,得,易知平面的法向量,設(shè)直線與平面所成的角為,平面與平面的夾角為,則,,由,得,即,解得,所以當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角和平面與平面的夾角相等.18、(1)2;(2)存在,.【解析】(1)對(duì)函數(shù)求導(dǎo),利用得的值;(2)討論和分離參數(shù),構(gòu)造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時(shí),由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當(dāng)時(shí),,則要恒成立,令,再令,所以在內(nèi)遞減,所以當(dāng)時(shí),,故,所以在內(nèi)遞增,;②當(dāng)時(shí),lnx>0,則要恒成立,由①可知,當(dāng)時(shí),,所以內(nèi)遞增,所以當(dāng)時(shí),,故,所以在內(nèi)遞增,綜合①②可得,即存在常數(shù)滿足題意19、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設(shè)直線方程,與拋物線聯(lián)立,利用韋達(dá)定理,即可求解.【詳解】(1)由題設(shè)知,拋物線的準(zhǔn)線方程為,由點(diǎn)到焦點(diǎn)的距離為,得,解得,所以拋物線的標(biāo)準(zhǔn)方程為(2)設(shè),,顯然直線的斜率存在,故設(shè)直線的方程為,聯(lián)立消去得,由得,即所以,又因?yàn)?,,所以,所以,即,解得,滿足,所以直線的方程為20、(1)0.040;(2)750;(3)76.5.【解析】(1)由頻率分布直方圖的性質(zhì)列出方程,能求出圖中的值;(2)先求出競(jìng)賽分?jǐn)?shù)不少于70分的頻率,由此能估計(jì)總體1000人中競(jìng)賽分?jǐn)?shù)不少于70分的人數(shù);(3)由頻率分布直方圖的性質(zhì)能估計(jì)總體1000人的競(jìng)賽分?jǐn)?shù)的平均數(shù)【詳解】(1)由頻率分布直方圖得:,解得圖中的值為0.040(2)競(jìng)賽分?jǐn)?shù)不少于70分的頻率為:,估計(jì)總體1000人中競(jìng)賽分?jǐn)?shù)不少于70分的人數(shù)為(3)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)總體1000人的競(jìng)賽分?jǐn)?shù)的平均數(shù)為:【點(diǎn)睛】本題主要考查頻率、頻數(shù)、平均數(shù)的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平21、(1),,;(2).【解析】(1)由等差中項(xiàng)的性質(zhì)可求出,又,,構(gòu)成等比數(shù)列,設(shè)出公差,代入可求出,從而求出數(shù)列的通項(xiàng)公式,代入可求出,的值,從而求出數(shù)列的通項(xiàng)公式;(2)將通項(xiàng)公式代入,運(yùn)用裂項(xiàng)相消的方法可求出前項(xiàng)和.【詳解】解析:(1)因?yàn)榈炔顢?shù)列中,,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論