版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省輝縣市第一中學(xué)2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,點在拋物線上,過點的直線與直線垂直相交于點,,則的值為()A. B.C. D.2.大數(shù)學(xué)家阿基米德的墓碑上刻有他最引以為豪的數(shù)學(xué)發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀(jì)念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.3.如圖,在正方體中,點E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.4.已知直線與直線垂直,則()A. B.C. D.5.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)據(jù),即“結(jié)繩計數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進(jìn)一,用6來記錄每年進(jìn)的錢數(shù),由圖可得,這位古人一年收入的錢數(shù)用十進(jìn)制表示為()A.180 B.179C.178 D.1776.設(shè)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.47.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關(guān)于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)8.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”9.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或10.已知等差數(shù)列前項和為,若,則的公差為()A.4 B.3C.2 D.111.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)12.點A是曲線上任意一點,則點A到直線的最小距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)滿足,則______.14.已知一組數(shù)據(jù)的平均數(shù)為4,方差為3,若另一組數(shù)據(jù)的平均數(shù)為10,則該組數(shù)據(jù)的方差為_______.15.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________16.已知內(nèi)角A,B,C的對邊為a,b,c,已知,且,則c的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,且為圓的圓心.過點的直線交拋物線與圓分別為,,,(從上到下)(1)求拋物線方程并證明是定值;(2)若,的面積比是,求直線的方程18.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值19.(12分)已知拋物線C:,過點且斜率為k的直線與拋物線C相交于P,Q兩點.(1)設(shè)點B在x軸上,分別記直線PB,QB的斜率為.若,求點B的坐標(biāo);(2)過拋物線C的焦點F作直線PQ的平行線與拋物線C相交于M,N兩點,求的值.20.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值21.(12分)已知正項等差數(shù)列滿足:,且,,成等比數(shù)列(1)求的通項公式;(2)設(shè)的前n項和為,且,求的前n項和22.(10分)設(shè),已知函數(shù)(1)若,求函數(shù)在處切線的方程;(2)求函數(shù)在上的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題,由于過拋物線上一點的直線與直線垂直相交于點,可得,又,故,所以的坐標(biāo)為,由余弦定理可得.故選:D.考點:拋物線的定義、余弦定理【點睛】本題主要考查拋物線的定義與性質(zhì),考查學(xué)生的計算能力,屬于中檔題2、C【解析】設(shè)球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設(shè)球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側(cè)面積為:,圓柱的表面積為:所以其表面積之比為:故選:C3、B【解析】建立空間直角坐標(biāo)系,利用向量夾角求解.【詳解】以為原點,為軸正方向建立空間直角坐標(biāo)系如圖所示,設(shè)正方體棱長為2,所以,所以異面直線與所成角的余弦值為.故選:B4、C【解析】根據(jù)兩直線垂直可直接構(gòu)造方程求得結(jié)果.【詳解】由兩直線垂直得:,解得:.故選:C.5、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個).所以古人一年收入的錢數(shù)用十進(jìn)制表示為個.故選:D.6、A【解析】由正弦定理求解即可.【詳解】因為,所以故選:A7、B【解析】如圖設(shè)橢圓的左焦點為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點為E,則,因為點A、B關(guān)于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B8、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當(dāng)二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C9、A【解析】根據(jù)直線:與:互相平行,由求解.【詳解】因為直線:與:互相平行,所以,即,解得或,當(dāng)時,直線:,:,互相平行;當(dāng)時,直線:,:,重合;所以,故選:A10、A【解析】由已知,結(jié)合等差數(shù)列前n項和公式、通項公式列方程組求公差即可.詳解】由題設(shè),,解得.故選:A11、C【解析】求出函數(shù)的導(dǎo)函數(shù),通過在某點處的導(dǎo)數(shù)為該點處切線的斜率,求出切線方程,并且判斷出極值,通過結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因為,,所以曲線在點處的切線方程為,故A錯;當(dāng)時,存在使,且當(dāng)時,;當(dāng)時,,即有極小值,無極大值,故B錯誤;設(shè)為的極值點,則,且,所以,,當(dāng)時,;當(dāng)時,,故C正確,D錯誤.12、A【解析】動點在曲線,則找出曲線上某點的斜率與直線的斜率相等的點為距離最小的點,利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域為:對求導(dǎo)可得:令解得:(其中舍去)當(dāng)時,,則此時該點到直線的距離為最小根據(jù)點到直線的距離公式可得:解得:故選:A二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】考點:函數(shù)導(dǎo)數(shù)與求值14、12【解析】根據(jù)題意,先通過原始數(shù)據(jù)的平均數(shù)、方差及新數(shù)據(jù)的平均數(shù)求出k,進(jìn)而求出新數(shù)據(jù)的方差.【詳解】由題意,原式數(shù)據(jù)的平均數(shù)和方程分別為:,則新數(shù)據(jù)的平均數(shù),于是新數(shù)據(jù)的方差.故答案為:12.15、【解析】首先構(gòu)造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結(jié),,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:16、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關(guān)系,求得,即可求得c的最小值.【詳解】,即,又,當(dāng)最大時,即,最小,且為由正弦定理得:,當(dāng)時,c的最小值為故答案為:【點睛】方法點睛:在解三角形題目中,若已知條件同時含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時出現(xiàn)兩個自由角(或三個自由角)時,要用到.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),證明見解析(2)【解析】(1)根據(jù),結(jié)合韋達(dá)定理即可獲解(2),再結(jié)合焦點弦公式即可獲解【小問1詳解】由題知,故,拋物線方程為,設(shè)直線的方程為,,,,,,得,,,,【小問2詳解】,由(1)知,可求得,,故的方程為,即【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是要把面積的比例關(guān)系轉(zhuǎn)為為邊的比例關(guān)系18、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點,,所在直線分別為,軸,以過點且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點,所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點睛】用空間向量求解立體幾何問題的注意點(1)建立坐標(biāo)系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點的坐標(biāo)(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關(guān)系,這點需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論19、(1)(2)【解析】(1)直線的方程為,其中,聯(lián)立直線與拋物線方程,由韋達(dá)定理結(jié)合已知條件可求得點的坐標(biāo);(2)直線的方程為,利用傾斜角定義知,,聯(lián)立直線與拋物線方程,利用弦長公式求得,進(jìn)而得解.小問1詳解】由題意,直線的方程為,其中.設(shè),聯(lián)立,消去得..,,即.,即.,,∴點的坐標(biāo)為.【小問2詳解】由題意,直線的方程為,其中,為傾斜角,則,設(shè).聯(lián)立,消去得...20、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個法向量和平面DCM的一個法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點,分別以,,的方向為x軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個法向量,則,不妨令,可得設(shè)為平面DCM的一個法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為21、(1);(2).【解析】(1)利用等差數(shù)列的通項公式結(jié)合條件即求;(2)利用條件可得,然后利用錯位相減法即求.【小問1詳解】設(shè)等差數(shù)列公差為d,由得,即,化簡得,又,,成等比數(shù)列,則,即,將代入上式得,化簡得,解得或-2(舍去),則,所以【小問2詳解】∵,當(dāng)時,,當(dāng)時,,符合上式,則,所以,令,則,,∴,化簡得綜上,的前n項和22、(1)(2)當(dāng)0≤a<2時,f(x)max=8-5a;當(dāng)a≥2時,f(x)max=-a【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)先求函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)等于零,求得兩極值點,然后討論極值點是否在所給區(qū)間內(nèi),再結(jié)合比較區(qū)間端點處的函數(shù)值的大小,可得答案.【小問1詳解】因為,所以,即a=0,所以,f(1)=1,所以切線方程:y-1=3(x-1),即.【小問2詳解】,令得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深度解析(2026)GBT 19212.11-2020變壓器、電抗器、電源裝置及其組合的安全 第11部分:高絕緣水平分離變壓器和輸出電壓超過1000V的分離變壓器的特殊要求和試驗
- 財務(wù)面試寶典財務(wù)知識面試題及答案
- 光纖融接設(shè)備項目可行性分析報告范文
- 實戰(zhàn)面試題員工自助崗運營專員崗位解析與參考答案
- 物流主管面試題庫與參考答案
- 系統(tǒng)集成項目經(jīng)理的職位全解及答案
- 特殊人群毒理數(shù)據(jù)亞組展示策略
- 深度解析(2026)《GBT 18481-2001電能質(zhì)量 暫時過電壓和瞬態(tài)過電壓》
- 電信行業(yè)網(wǎng)絡(luò)運營總監(jiān)面試題網(wǎng)絡(luò)優(yōu)化與安全保障
- 工程項目經(jīng)理職位的招聘面準(zhǔn)備題集
- 2025四川成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)(龍泉驛區(qū))區(qū)屬國有企業(yè)專業(yè)技術(shù)人員招聘18人筆試考試參考試題及答案解析
- 地鐵車站設(shè)施與服務(wù)優(yōu)化策略
- 文化創(chuàng)業(yè)街區(qū)創(chuàng)意
- 年會合同協(xié)議書模板
- 中西醫(yī)結(jié)合治療類風(fēng)濕關(guān)節(jié)炎疼痛
- 2025國際胰腺病學(xué)會急性胰腺炎修訂指南解讀課件
- 雨課堂學(xué)堂云在線《中國馬克思主義與當(dāng)代(北京化工大學(xué) )》單元測試考核答案
- 貴州省貴陽市2025-2026學(xué)年高三上學(xué)期11月質(zhì)量監(jiān)測化學(xué)試卷(含答案)
- 機(jī)場設(shè)備維修與保養(yǎng)操作手冊
- 動脈穿刺法教案(2025-2026學(xué)年)
- 2025年《肌肉骨骼康復(fù)學(xué)》期末考試復(fù)習(xí)參考題庫(含答案)
評論
0/150
提交評論