版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025-2026學(xué)年浙江省嘉興市南湖區(qū)第一中學(xué)數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.已知圓,則圓上的點到坐標原點的距離的最小值為()A.-1 B.C.+1 D.63.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.4.設(shè)等差數(shù)列,的前n項和分別是,,若,則()A. B.C. D.5.已知直線與平行,則a的值為()A.1 B.﹣2C. D.1或﹣26.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.457.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.8.已知拋物線C:的焦點為F,過點P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點,則()A. B.14C. D.159.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則10.命題“,”的否定是()A., B.,C., D.,11.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.12.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的兩焦點為,,P為C上的一點(P與,不共線),則的周長為______.14.等比數(shù)列中,,,則數(shù)列的公比為____.15.若圓C:與圓D2的公共弦長為,則圓D的半徑為___________.16.設(shè),復(fù)數(shù),,若是純虛數(shù),則的虛部為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程18.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點.(1)求證:平面PBC;(2)在線段PD上是否存在一點M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.19.(12分)已知等差數(shù)列的公差,前3項和,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.20.(12分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動點P在線段AC上運動(1)若Q為的中點,求點Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍21.(12分)設(shè)命題,,命題,.若p、q都為真命題,求實數(shù)m的取值范圍.22.(10分)已知,直線過且與交于兩點,過點作直線的平行線交于點(1)求證:為定值,并求點的軌跡的方程;(2)設(shè)動直線與相切于點,且與直線交于點,在軸上是否存在定點,使得以為直徑的圓恒過定點?若存在,求出的坐標;若不存在,說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.2、A【解析】先求出圓心和半徑,求出圓心到坐標原點的距離,從而求出圓上的點到坐標原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標原點的距離最小值為.故選:A3、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.4、B【解析】利用求解.【詳解】解:因為等差數(shù)列,的前n項和分別是,所以.故選:B5、A【解析】根據(jù)題意可得,解之即可得解.【詳解】解:因為直線與平行,所以,解得.故選:A.6、C【解析】設(shè)雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設(shè)點是雙曲線與截面的一個交點,設(shè)雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:7、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A8、C【解析】設(shè)A、B兩點的坐標分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡,進而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點坐標分別為,,直線的方程為,拋物線的準線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.9、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的10、D【解析】根據(jù)含一個量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D11、B【解析】求出,進而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長恰等于實軸的長,,,故選:B12、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結(jié)合橢圓的定義求得正確答案.【詳解】橢圓方程為,所以,所以三角形的周長為.故答案為:14、【解析】根據(jù)等比數(shù)列的定義,結(jié)合已知條件,代值計算即可求得結(jié)果.【詳解】因為是等比數(shù)列,設(shè)其公比為,又,,故可得,解得.故答案為:.15、【解析】首先根據(jù)圓與圓的位置關(guān)系得到公共弦方程,再根據(jù)弦長求解即可.【詳解】根據(jù)得公共弦方程為:.因為公共弦長為,所以直線過圓的圓心.所以,解得.故答案為:16、【解析】由復(fù)數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復(fù)數(shù)及虛部的定義即可求解.【詳解】解:因為復(fù)數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于中檔題.18、(1)證明見解析(2)存在,且【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設(shè),利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設(shè)是的中點,連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,,設(shè)平面的法向量為,則,故可設(shè).,且平面,所以平面.【小問2詳解】,設(shè),則,,,設(shè)直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.19、(1)(2)【解析】(1)由,且成等比數(shù)列列式求解出和,然后寫出;(2)由,用錯位相減法求和即可.【詳解】(1)∵,∴①又∵成等比數(shù)列,∴,②∵,由①②解得:,,∴(2)∵,,∴兩式相減,得∴【點睛】本題考查了等差數(shù)列基本量的計算,錯位相減法求和,屬于中檔題.20、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標系,利用空間向量法求出平面的法向量,結(jié)合點到平面的距離的向量求法計算即可;(2)設(shè)點,,進而得出的坐標,利用向量的數(shù)量積即可列出線面角正弦值的表達式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點在線段AC上運動可設(shè)點,于是,,所以,的取值范圍是21、【解析】先求出命題為真時,的取值范圍,再取交集可得答案.【詳解】若命題,為真命題,則,解得;若命題,為真命題,則命題,為假命題,即方程無實數(shù)根,因此,,解得.又p、q都為真命題,所以實數(shù)m的取值范圍是.【點睛】本題考查全稱命題與特稱命題的真假求參數(shù)值、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力.22、(1)證明見解析,()(2)存在,【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 客戶成功經(jīng)理職位面試題庫及答案
- 怎樣應(yīng)對資產(chǎn)管理計劃專員面試這里有答案
- 2025年人工智能客戶服務(wù)平臺建設(shè)項目可行性研究報告
- 2025年跨界餐飲品牌集合店項目可行性研究報告
- 2025年農(nóng)村電商發(fā)展的可行性研究報告
- 2025年農(nóng)業(yè)科技創(chuàng)新實驗基地建設(shè)項目可行性研究報告
- 2026年安徽機電職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫附答案詳解
- 2026年遼寧鐵道職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案詳解一套
- 2026年恩施職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案詳解1套
- 2026年南昌工學(xué)院單招綜合素質(zhì)考試題庫及參考答案詳解1套
- TE1002常見終端產(chǎn)品配置維護-ZXV10 XT802
- 形象設(shè)計行業(yè)市場分析與發(fā)展建議
- 管理工作者應(yīng)對突發(fā)事件
- 工藝部門技能提升培訓(xùn)計劃
- 北京市昌平區(qū)2024-2025學(xué)年三年級上學(xué)期期末數(shù)學(xué)試題
- 口腔診所前臺接待流程與話術(shù)模板
- 15萬噸電解鋁工程施工組織設(shè)計
- 超精密加工技術(shù)期末考試
- 犍為經(jīng)開區(qū)馬邊飛地化工園區(qū)污水處理廠環(huán)評報告
- 學(xué)困生轉(zhuǎn)換課件
- 食堂干貨調(diào)料配送方案(3篇)
評論
0/150
提交評論