湖南省三湘名校教育聯(lián)盟2025-2026學(xué)年高二上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
湖南省三湘名校教育聯(lián)盟2025-2026學(xué)年高二上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
湖南省三湘名校教育聯(lián)盟2025-2026學(xué)年高二上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
湖南省三湘名校教育聯(lián)盟2025-2026學(xué)年高二上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
湖南省三湘名校教育聯(lián)盟2025-2026學(xué)年高二上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省三湘名校教育聯(lián)盟2025-2026學(xué)年高二上數(shù)學(xué)期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列滿足,,則數(shù)列的通項公式為()A. B.C. D.2.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確3.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x4.直線的傾斜角為()A.0 B.C. D.5.在平面上有一系列點(diǎn),對每個正整數(shù),點(diǎn)位于函數(shù)的圖象上,以點(diǎn)為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.6.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓的交點(diǎn)將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.7.若直線與直線垂直,則()A.6 B.4C. D.8.動點(diǎn)P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.9.如圖在中,,,在內(nèi)作射線與邊交于點(diǎn),則使得的概率是()A. B.C. D.10.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B.C. D.11.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.512.某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率如下:排隊人數(shù)01234概率0.10.16030.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26C.0.56 D.0.74二、填空題:本題共4小題,每小題5分,共20分。13.用數(shù)學(xué)歸納法證明等式:,驗證時,等式左邊________14.曲線圍成的圖形的面積是__________15.動直線,恒過的定點(diǎn)是________16.若向量滿足,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設(shè)的前項和為,令,求證:.18.(12分)求下列不等式的解集:(1);(2).19.(12分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.20.(12分)已知點(diǎn),圓.(1)若直線l過點(diǎn)M,且被圓C截得的弦長為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)N在圓C上運(yùn)動,線段的中點(diǎn)為P,求點(diǎn)P的軌跡方程.21.(12分)已知橢圓C與橢圓有相同的焦點(diǎn),且長軸長為4(1)求C的標(biāo)準(zhǔn)方程;(2)直線,分別經(jīng)過點(diǎn)與C相切,切點(diǎn)分別為A,B,證明:22.(10分)已知橢圓的離心率為,點(diǎn)在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn),直線過點(diǎn)M,且與直線l垂直.記直線與y軸的交點(diǎn)為N,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列的定義和通項公式直接得出結(jié)果.【詳解】因為,所以數(shù)列是等差數(shù)列,公差為1,所以.故選:B2、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.3、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.4、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.5、C【解析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項公式,得出,最后利用裂項相消,求出數(shù)列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.6、B【解析】設(shè)出雙曲線方程,把雙曲線上的點(diǎn)的坐標(biāo)表示出來并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點(diǎn),AD所在直線為x軸建系,不妨設(shè),則該雙曲線過點(diǎn)且,將點(diǎn)代入方程,故離心率為,故選:B【點(diǎn)睛】本題考查已知點(diǎn)在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目7、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.8、B【解析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B9、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點(diǎn)睛】本題考查幾何概型及其計算方法的知識,屬于基礎(chǔ)題10、C【解析】利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.11、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C12、D【解析】利用互斥事件概率計算公式直接求解【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊的概率為:故選:D【點(diǎn)睛】本題考查概率的求法、互斥事件概率計算公式,考查運(yùn)算求解能力,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)數(shù)學(xué)歸納法的步驟即可解答.【詳解】用數(shù)學(xué)歸納法證明等式:,驗證時,等式左邊=.故答案為:.14、【解析】當(dāng),時,已知方程是,即.它對應(yīng)的曲線是第一象限內(nèi)半圓?。òǘ它c(diǎn)),它的圓心為,半徑為.同理,當(dāng),;,;,時對應(yīng)的曲線都是半圓?。ㄈ鐖D).它所圍成的面積是.故答案為15、【解析】將直線方程轉(zhuǎn)化為,從而可得,即可得到結(jié)果.【詳解】∵,∴∴,解得:x=2,y=2.即方程(a∈R)所表示的直線恒過定點(diǎn)(2,2)故答案為:16、【解析】根據(jù)題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關(guān)系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當(dāng)n≥2時,=當(dāng)n=1時,也符合上式,∴;當(dāng)時,,當(dāng)n=1時,也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設(shè)為數(shù)列的前n項和,則.18、(1)(2)【解析】(1)根據(jù)一元二次不等式的解法求得不等式的解集.(2)根據(jù)分式不等式的解法求得不等式的解集.【小問1詳解】不等式等價于,解得.∴不等式的解集為.【小問2詳解】不等式等價于,解得或.∴不等式的解集為.19、(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極小值是,無極大值.(2)【解析】(1)由當(dāng),得到,求導(dǎo),再由,求解;(2)將,轉(zhuǎn)化為成立,令,求其最大值即可.【小問1詳解】解:當(dāng)時,,定義域為,所以,當(dāng)時,,當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以時,取得極小值是,無極大值.【小問2詳解】因為,即成立.設(shè),則,當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,即.20、(1)或(2)【解析】(1)由直線被圓C截得的弦長為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結(jié)合點(diǎn)到直線的距離公式,列出方程,即可求解.(2)設(shè)點(diǎn),,根據(jù)線段的中點(diǎn)為,求得,結(jié)合在圓上,代入即可求解.【小問1詳解】解:由題意,圓,可得圓心,半徑,因為直線被圓C截得的弦長為,則圓心到直線的距離為,當(dāng)直線的斜率不存在時,此時直線的方程為,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.【小問2詳解】解:設(shè)點(diǎn),因為點(diǎn),線段的中點(diǎn)為,可得,解得,又因為在圓上,可得,即,即點(diǎn)的軌跡方程為.21、(1);(2)證明見解析.【解析】(1)根據(jù)共焦點(diǎn)求出參數(shù)c,由長軸長求參數(shù)a,即可確定C的標(biāo)準(zhǔn)方程;(2)令過切線為,聯(lián)立橢圓C結(jié)合得到關(guān)于k的一元二次方程,根據(jù)根與系數(shù)關(guān)系即可證明結(jié)論.【小問1詳解】由題設(shè),對于橢圓C有,又橢圓的焦點(diǎn)為,則,所以,故C的標(biāo)準(zhǔn)方程.【小問2詳解】由題設(shè),直線,的斜率必存在,令橢圓C的切線方程為,聯(lián)立橢圓方程并整理可得:,由相切關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論