河南省平頂山許昌濟源2026屆數(shù)學高二第一學期期末達標檢測模擬試題含解析_第1頁
河南省平頂山許昌濟源2026屆數(shù)學高二第一學期期末達標檢測模擬試題含解析_第2頁
河南省平頂山許昌濟源2026屆數(shù)學高二第一學期期末達標檢測模擬試題含解析_第3頁
河南省平頂山許昌濟源2026屆數(shù)學高二第一學期期末達標檢測模擬試題含解析_第4頁
河南省平頂山許昌濟源2026屆數(shù)學高二第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省平頂山許昌濟源2026屆數(shù)學高二第一學期期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.邊長為的正方形沿對角線折成直二面角,、分別為、的中點,是正方形的中心,則的大小為()A. B.C. D.2.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或3.在中,內(nèi)角所對的邊為,若,,,則()A. B.C. D.4.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.5.實數(shù)m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線6.如圖,在長方體中,,,則直線和夾角的余弦值為()A. B.C. D.7.已知隨機變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.27188.過雙曲線的右焦點有一條弦是左焦點,那么的周長為()A.28 B.C. D.9.已知是函數(shù)的導函數(shù),則()A0 B.2C.4 D.610.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm11.已知m,n是兩條不同直線,α,β,γ是三個不同平面,下列命題中正確的為A若α⊥γ,β⊥γ,則α∥β B.若m∥α,m∥β,則α∥βC.若m∥α,n∥α,則m∥n D.若m⊥α,n⊥α,則m∥n12.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程為______14.已知數(shù)列滿足:,,,則______15.已知橢圓的右頂點為,為上一點,則的最大值為______.16.過直線上一動點P作圓的兩條切線,切點分別為A,B,則四邊形PACB面積的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的左,右焦點分別為,其離心率為,且點在C上.(1)求C的方程;(2)O為坐標原點,P為C上任意一點.若M為的中點,過M且平行于的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得?若存在,求值;若不存在,說明理由.18.(12分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.19.(12分)已知直線,,分別求實數(shù)的值,使得:(1);(2);(3)與相交.20.(12分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.21.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.22.(10分)已知圓C經(jīng)過點,,且圓心C在直線上(1)求圓C的標準方程;(2)過點向圓C引兩條切線PD,PE,切點分別為D,E,求切線PD,PE的方程,并求弦DE的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】建立空間直角坐標系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O為原點,分別以OB、OA、OC所在直線為x、y、z軸建立空間直角坐標系則,,,,又,則故選:B2、D【解析】根據(jù)斜率存在和不存在分類討論,斜率存在時設直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設直線方程為,即,由,得,直線方程為,即故選:D3、B【解析】利用正弦定理角化邊得到,再利用余弦定理構造方程求得結果.【詳解】,,由余弦定理得:,,.故選:B.4、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.5、B【解析】根據(jù)的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B6、D【解析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.7、C【解析】根據(jù)正態(tài)分布的對稱性可求概率.【詳解】由題設可得,,故選:C.8、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結合即可算出△的周長【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C9、D【解析】由導數(shù)運算法則求出導函數(shù),再計算導數(shù)值【詳解】由題意,,所以故選:D10、B【解析】由離心率求出雙曲線方程,由對稱性設出點A,B,D坐標,求出坐標,求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設,則,,則,所以,則,解得:,故.故選:B11、D【解析】根據(jù)空間線面、面面的平行,垂直關系,結合線面、面面的平行,垂直的判定定理、性質(zhì)定理解決【詳解】∵α⊥γ,β⊥γ,α與β的位置關系是相交或平行,故A不正確;∵m∥α,m∥β,α與β的位置關系是相交或平行,故B不正確;∵m∥α,n∥α,m與n的位置關系是相交、平行或異面∴故C不正確;∵垂直于同一平面的兩條直線平行,∴D正確;故答案D【點睛】本題考查線面平行關系判定,要注意直線、平面的不確定情況12、C【解析】,故,即,故漸近線方程為.【考點】本題考查雙曲線的基本性質(zhì),考查學生的化歸與轉(zhuǎn)化能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將雙曲線方程化成標準方程,得到且,利用雙曲線漸近線方程,可得結果【詳解】把雙曲線化成標準方程為,且,雙曲線的漸近線方程為,即故答案為【點睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對基礎知識的掌握情況,屬于基礎題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.14、.【解析】運用累和法,結合等差數(shù)列前項和公式進行求解即可.【詳解】因為,,所以當時,有,因此有:,即,當時,適合上式,所以,故答案為:.15、【解析】設出點P的坐標,利用兩點間距離公式建立函數(shù)關系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:16、【解析】當圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.然后利用點到直線的距離公式求出圓心到直線的距離,再結合弦長公式和面積公式進行計算即可.【詳解】解:根據(jù)題意可知:當圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.圓心到直線的距離為四邊形面積的最小值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)列出關于a、b、c的方程組求解即可;(2)直線l斜率不存在時,易得λ的值;斜率存在時,設l方程為,聯(lián)立直線l與橢圓C的方程,求出;求出OP方程,聯(lián)立OP方程與橢圓C的方程,求出;代入即可求得λ.【小問1詳解】由已知可得,解得,∴橢圓C的標準方程為.【小問2詳解】若直線的斜率不存在時,,∴;當斜率存在時,設直線l的方程為.聯(lián)立直線l與橢圓方程,消去y,得,∴.∵,設直線的方程為,聯(lián)立直線與橢圓方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在滿足條件,綜上可得,存在滿足條件.【點睛】關鍵點點睛:本題的關鍵在于弦長公式的運用,AB斜率為k,,M(1,0),則,,,將弦長之積轉(zhuǎn)化為韋達定理求解.18、(1)在R上單調(diào)遞增,無單調(diào)遞減區(qū)間;(2)證明見解析.【解析】(1)對求導,令并應用導數(shù)求最值,確定的符號,即可知的單調(diào)性.(2)利用作差法轉(zhuǎn)化證明的結論,令結合導數(shù)研究其單調(diào)性,最后討論的大小關系判斷的符號即可證結論.【小問1詳解】由題設,.令,則.當時,單調(diào)遞減;當時,單調(diào)遞增故,即,則在R上單調(diào)遞增,無單調(diào)遞減區(qū)間.【小問2詳解】.令,則.令,則,顯然在R上單調(diào)遞增,且,∴當時,單調(diào)遞減;當時,單調(diào)遞增.故,即,在R上單調(diào)遞增,又,∴當時,,;當時,,;當時,.綜上,,即.【點睛】關鍵點點睛:第二問,應用作差法有,構造中間函數(shù)并應用導數(shù)研究單調(diào)性,最后討論的大小證結論.19、(1)或(2)或(3)且【解析】(1)根據(jù)直線一般式平行的條件列式計算;(2)根據(jù)直線一般式垂直的條件列式計算;(3)根據(jù)相交和平行的關系可得答案.【小問1詳解】,,解得或又時,直線,,兩直線不重合;時,直線,,兩直線不重合;故或;【小問2詳解】,,解得或;【小問3詳解】與相交故由(1)得且.20、(1)證明見解析(2)【解析】(1)由結合等差數(shù)列的定義證明即可;(2)由結合錯位相減法得出前項和.【小問1詳解】在兩邊同時除以,得:,,故數(shù)列是以1為首項,1為公差的等差數(shù)列;【小問2詳解】由(1)得:,,①②①②得:所以.21、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設,則由(1)知,所以,,兩式相減,則,所以.22、(1)(2)或,【解析】(1)設圓心,根據(jù)圓心在直線上及圓過兩點建立方程求解即可;(2)分切線的斜率存在與不存在分類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論