版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆海南省華僑中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.2.散點圖上有5組數(shù)據(jù):據(jù)收集到的數(shù)據(jù)可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.23.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°4.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.25.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.6.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.8.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.9.已知等差數(shù)列中的、是函數(shù)的兩個不同的極值點,則的值為()A. B.1C.2 D.310.若,則()A.1 B.2C.4 D.811.已知長方體的底面ABCD是邊長為4的正方形,長方體的高為,則與對角面夾角的正弦值等于()A. B.C. D.12.將一張坐標(biāo)紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為三角形的一個內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)14.設(shè)函數(shù)的導(dǎo)數(shù)為,且,則___________15.若雙曲線的一條漸近線的傾斜角為,則雙曲線的離心率為___________.16.若關(guān)于的不等式的解集為R,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.19.(12分)已知橢圓經(jīng)過點,(1)求橢圓的方程;(2)已知直線的傾斜角為銳角,與圓相切,與橢圓交于、兩點,且的面積為,求直線的方程20.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實數(shù)的取值范圍.21.(12分)在等差數(shù)列中,,前10項和(1)求列通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和22.(10分)已知點A(,0),點C為圓B:(B為圓心)上一動點,線段AC的垂直平分線與直線BC交于點G(1)設(shè)點G的軌跡為曲線T,求曲線T的方程;(2)若過點P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點,求△MNO面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出,的坐標(biāo),再求中點坐標(biāo),利用點滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標(biāo)為,因為點滿足,所以,所以,即,所以.故選:C.【點睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.2、C【解析】通過樣本中心點來求得正確答案.【詳解】,故,則,故.故選:C3、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設(shè),直線斜率,若直線的傾斜角為,則,∵,∴.故選:D4、D【解析】細(xì)查題意,把代入橢圓方程,得,整理得出,設(shè)出點的坐標(biāo),由根與系數(shù)的關(guān)系可以推出線段的中點坐標(biāo),再由過原點與線段的中點的直線的斜率為,進(jìn)而可推導(dǎo)出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設(shè),則,從而線段的中點的橫坐標(biāo)為,縱坐標(biāo),因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應(yīng)的解題策略,中點坐標(biāo)公式,斜率坐標(biāo)公式,屬于簡單題目.5、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.6、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.7、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.8、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個選項一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因為命題p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯誤;為真,故B正確;為假,故C錯誤;為假,故D錯誤.故選:B9、C【解析】對求導(dǎo),由題設(shè)及根與系數(shù)關(guān)系可得,再根據(jù)等差中項的性質(zhì)求,最后應(yīng)用對數(shù)運算求值即可.【詳解】由題設(shè),,由、是的兩個不同的極值點,所以,又是等差數(shù)列,所以,即,故.故選:C10、D【解析】由題意結(jié)合導(dǎo)數(shù)的運算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.11、C【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長為4的正方形,,∴,,,因為,,且,所以平面,∴,平面的法向量,∴與對角面所成角的正弦值為故選:C.12、D【解析】設(shè),,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標(biāo),折痕與直線AB垂直,進(jìn)而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標(biāo)為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、焦點在軸上的橢圓,焦點在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進(jìn)而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點在x軸上的雙曲線.故答案為:焦點在y軸上橢圓,焦點在x軸上的雙曲線,兩條直線.14、【解析】,而,所以,,故填:.考點:導(dǎo)數(shù)15、2【解析】利用雙曲線的漸近線的傾斜角,求解,關(guān)系,然后求解離心率,即可求解.【詳解】雙曲線一條漸近線的傾斜角為,可得,所以,所以雙曲線的離心率為.故答案為:2.16、【解析】分為和考慮,當(dāng)時,根據(jù)題意列出不等式組,求出的取值范圍.【詳解】當(dāng)?shù)茫?,滿足題意;當(dāng)時,要想保證關(guān)于的不等式的解集為R,則要滿足:,解得:,綜上:的取值范圍為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè)為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.18、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導(dǎo)數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導(dǎo)即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設(shè),當(dāng)時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當(dāng)時,由,得,在上為減函數(shù),,時,,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點,則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設(shè)則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.19、(1)(2)【解析】(1)將點M、N的坐標(biāo)代入橢圓方程計算,求出a、b的值即可;(2)設(shè)l的方程為:,,根據(jù)直線與圓的位置關(guān)系可得,直線方程聯(lián)立橢圓方程并消去y,利用韋達(dá)定理表示出,根據(jù)弦長公式求出,進(jìn)而列出關(guān)于k的方程,解之即可.【小問1詳解】橢圓經(jīng)過點,則,解得,【小問2詳解】設(shè)l的方程為:與圓相切設(shè)點,∴(則Δ>0,,,,,,,,,故,20、(1)答案見解析;(2).【解析】(1)求出函數(shù)的定義域為,求得,分、、三種情況討論,分析導(dǎo)數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對實數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗證是否成立,由此可得出實數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域為,.(i)當(dāng)時,,函數(shù)在上單調(diào)遞增;(ii)當(dāng)時,令得.若,則;若,則.①當(dāng)時,,函數(shù)在上單調(diào)遞增;②當(dāng)時,,當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減;綜上,可得,當(dāng)時,函數(shù)在上單調(diào)遞增;當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當(dāng)時,單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當(dāng)時,,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當(dāng)時,由于,,,所以,存在,使得.當(dāng)時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實數(shù)的取值范圍是.【點睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,考查分類討論思想的應(yīng)用,屬于難題.21、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為22、(1)(2)1【解析】(1)可由題意,點G在線段AC的垂直平分線上,,可利用橢圓的定義,得到點G的軌跡為橢圓,然后利用已知的長度關(guān)系求解出橢圓方程;(2)可通過設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 22200.2-2025低壓電器可靠性第2部分:塑料外殼式斷路器可靠性試驗方法
- 攤商安全強(qiáng)化知識考核試卷含答案
- 地質(zhì)采樣工安全生產(chǎn)能力競賽考核試卷含答案
- 焦?fàn)t調(diào)溫工沖突解決水平考核試卷含答案
- 酒店員工入職與離職管理制度
- 酒店前廳安全管理制度
- 酒店公共區(qū)域衛(wèi)生管理制度
- 財務(wù)績效考核與獎懲制度
- 年產(chǎn)10萬立方米木質(zhì)刨花板生產(chǎn)線項目環(huán)境影響報告表
- 樹脂美牙培訓(xùn)
- 員 工 調(diào) 動 申 請 表
- 工裝治具設(shè)計規(guī)范
- 手衛(wèi)生知識培訓(xùn)內(nèi)容(通用3篇)
- 無損檢測質(zhì)量記錄表格
- 膠配膠車間安全操作規(guī)程
- 美國AAMA檢驗標(biāo)準(zhǔn)
- 2023牛津譯林版本9Aunit1詞匯表(詞性漢語)
- 高速公路機(jī)電消防施工組織設(shè)計
- GB/T 24135-2022橡膠或塑料涂覆織物加速老化試驗
- CO2汽提尿素自控授課
- 初級社工師培訓(xùn)
評論
0/150
提交評論