2026屆廣東省湛江市達標名校數(shù)學高二上期末調(diào)研試題含解析_第1頁
2026屆廣東省湛江市達標名校數(shù)學高二上期末調(diào)研試題含解析_第2頁
2026屆廣東省湛江市達標名校數(shù)學高二上期末調(diào)研試題含解析_第3頁
2026屆廣東省湛江市達標名校數(shù)學高二上期末調(diào)研試題含解析_第4頁
2026屆廣東省湛江市達標名校數(shù)學高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆廣東省湛江市達標名校數(shù)學高二上期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.2.直線與直線交于點Q,m是實數(shù),O為坐標原點,則的最大值是()A.2 B.C. D.43.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.4.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.5.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.6.已知圓,為圓外的任意一點,過點引圓的兩條切線、,使得,其中、為切點.在點運動的過程中,線段所掃過圖形的面積為()A. B.C. D.7.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.48.設(shè)雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.9.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.10.在正方體中,分別為的中點,為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.11.拋物線的準線方程是,則a的值為()A.4 B.C. D.12.執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線,圓,若直線與圓相交于兩點,則的最小值為______14.4與16的等比中項是________.15.如圖是一個邊長為2的正方體的平面展開圖,在這個正方體中,則下列說法中正確的序號是___________.①直線與直線垂直;②直線與直線相交;③直線與直線平行;④直線與直線異面;16.的展開式中所有項的系數(shù)和為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)解不等式;(2)若不等式對恒成立,求實數(shù)m的取值范圍18.(12分)某外語學校的一個社團中有7名同學,其中2人只會法語;2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學校交流訪問(1)在選派的3人中恰有2人會法語的概率;(2)在選派的3人中既會法語又會英語的人數(shù)X的分布列和數(shù)學期望19.(12分)在等差數(shù)列中,,.(1)求的通項公式;(2)求數(shù)列的前項和.20.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和21.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).22.(10分)已知一張紙上畫有半徑為4圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標準方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計算公式,即可求得結(jié)果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.2、B【解析】求出兩直線的交點坐標,結(jié)合兩點間的距離公式得到,進而可以求出結(jié)果.【詳解】因為與的交點坐標為所以,當時,,所以的最大值是,故選:B.3、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C4、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因為,所以,所以在上單調(diào)遞增,又,,,因為,所以,所以.故選:C5、D【解析】設(shè)AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.6、D【解析】連接、、,分析可知四邊形為正方形,求出點的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環(huán),利用圓的面積公式可求得結(jié)果.【詳解】連接、、,由圓的幾何性質(zhì)可知,,又因為且,故四邊形為正方形,圓心,半徑為,則,故點的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環(huán),故在點運動的過程中,線段所掃過圖形的面積為.故選:D.7、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C8、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.9、D【解析】根據(jù)橢圓的一個焦點是圓的圓心,求得c,再根據(jù)橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D10、A【解析】建立空間直角坐標系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標原點,DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標系,設(shè)正方體棱長為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A11、C【解析】先求得拋物線的標準方程,可得其準線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標準方程為,準線方程為,又準線方程是,所以,所以.故選:C12、B【解析】根據(jù)程序框圖的循環(huán)邏輯寫出其執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】由程序框圖的邏輯,執(zhí)行步驟如下:1、:執(zhí)行循環(huán),,;2、:執(zhí)行循環(huán),,;3、:執(zhí)行循環(huán),,;4、:執(zhí)行循環(huán),,;5、:執(zhí)行循環(huán),,;6、:不成立,跳出循環(huán).∴輸出的值為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出直線過的定點,當圓心和定點的連線垂直于直線時,取得最小值,結(jié)合即可求解.【詳解】由題意知,圓,圓心,半徑,直線,,,解得,故直線過定點,設(shè)圓心到直線的距離為,則,可知當距離最大時,有最小值,由圖可知,時,最大,此時,此時.故的最小值為.故答案為:.14、±8【解析】解析由G2=4×16=64得G=±8.答案±815、①④【解析】畫出正方體,,,故,①正確,根據(jù)相交推出矛盾得到②錯誤,根據(jù),與相交得到③錯誤,排除共面的情況得到④正確,得到答案.【詳解】如圖所示的正方體中,,,故,①正確;若直線與直線相交,則四點共面,即在平面內(nèi),不成立,②錯誤;,與相交,故直線與直線不平行,③錯誤;,與不平行,故與不平行,若與相交,則四點共面,在平面內(nèi),不成立,故直線與直線異面,④正確;故答案為:①④.16、##0.015625【解析】賦值法求解二項式展開式中所有項的系數(shù)和.【詳解】令得:,即為展開式中所有項的系數(shù)和.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)移項,兩邊平方即可獲解;(2)利用絕對值不等式即可.【小問1詳解】即即,即即即或所以不等式的解集為【小問2詳解】由題知對恒成立因為.所以,解得即或,所以實數(shù)的取值范為18、(1)(2)分布列見解析;【解析】(1)利用組合的知識計算出基本事件總數(shù)和滿足題意的基本事件數(shù),根據(jù)古典概型概率公式求得結(jié)果;(2)確定所有可能的取值,根據(jù)超幾何分布概率公式可計算出每個取值對應(yīng)的概率,進而得到分布列和數(shù)學期望.【小問1詳解】名同學中,會法語的人數(shù)為人,從人中選派人,共有種選法;其中恰有人會法語共有種選法;選派的人中恰有人會法語的概率.【小問2詳解】由題意可知:所有可能的取值為,;;;;的分布列為:數(shù)學期望為19、(1)(2)【解析】(1)設(shè)的公差為,根據(jù)題意列出關(guān)于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項公式,即可求出結(jié)果.(2)對數(shù)列中項的正負情況進行討論,再結(jié)合等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:設(shè)的公差為d,因為,,所以解得故.【小問2詳解】解:設(shè)的前項和為,則.當時,,所以所以;當時,.所以.20、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項公式為;則所以【點睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎(chǔ)題21、(1)(2)答案見解析【解析】(1)當時將原不等式變形為,根據(jù)基本不等式計算即可;(2)將原不等式化為,求出參數(shù)a分別取值、、時的解集.【小問1詳解】不等式即為:,當時,不等式可變形為:,因為,當且僅當時取等號,所以,所以實數(shù)a的取值范圍是;【小問2詳解】不等式,即,等價于,轉(zhuǎn)化為;當時,因為,所以不等式的解集為;當時,因為,所以不等式的解集為;當時,因為,所以不等式的解集為;綜上所述,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為.22、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論