山西省太原市山西大學(xué)附屬中學(xué)2025年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第1頁
山西省太原市山西大學(xué)附屬中學(xué)2025年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第2頁
山西省太原市山西大學(xué)附屬中學(xué)2025年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第3頁
山西省太原市山西大學(xué)附屬中學(xué)2025年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第4頁
山西省太原市山西大學(xué)附屬中學(xué)2025年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省太原市山西大學(xué)附屬中學(xué)2025年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.2.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.3.設(shè)P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.104.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.5.已知x,y是實數(shù),且,則的最大值是()A. B.C. D.6.設(shè)是兩個非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.設(shè)等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.268.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.9.如圖,在四面體中,,,,,為線段的中點,則等于()A B.C. D.10.已知不等式只有一個整數(shù)解,則m的取值范圍是()A. B.C. D.11.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.12.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線,的左、右焦點分別為、,且的焦點到漸近線的距離為1,直線與交于,兩點,為弦的中點,若為坐標(biāo)原點)的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形14.若展開式的二項式系數(shù)之和是64,則展開式中的常數(shù)項的值是__________.15.有公共焦點,的橢圓和雙曲線的離心率分別為,,點為兩曲線的一個公共點,且滿足,則的值為______16.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)令,求函數(shù)的零點;(2)令,求函數(shù)的最小值.18.(12分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,若問題中的存在,求實數(shù)的取值范圍;若問題中的不存在,請說明理由設(shè)等差數(shù)列的前n項和為,數(shù)列的前n項和為,___________,,,是否存在實數(shù),對任意都有?19.(12分)已知橢圓過點,且離心率.(1)求橢圓的方程;(2)設(shè)直交橢圓于兩點,判斷點與以線段為直徑的圓的位置關(guān)系,并說明理由.20.(12分)已知A,B兩地相距200km,某船從A地逆水到B地,水速為8km/h,船在靜水中的速度為vkm/h(v>8).若船每小時的燃料費(fèi)與其在靜水中速度的平方成正比,比例系數(shù)為k,當(dāng)v=12km/h,每小時的燃料費(fèi)為720元(1)求比例系數(shù)k(2)當(dāng)時,為了使全程燃料費(fèi)最省,船的實際前進(jìn)速度應(yīng)為多少?(3)當(dāng)(x為大于8的常數(shù))時,為了使全程燃料費(fèi)最省,船的實際前進(jìn)速度應(yīng)為多少?21.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設(shè)直線,的斜率分別為,,求證:為定值22.(10分)已知圓.(1)若不過原點的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)拋物線和寫出焦點坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.2、D【解析】為中點,連接,易得為平行四邊形,進(jìn)而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應(yīng)用勾股定理求相關(guān)線段長,即可得△為直角三角形,最后應(yīng)用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D3、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C4、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C5、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點與點連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點與點A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時,斜率最大或最小,當(dāng)切線位于切線AB時斜率最大.此時,,,所以的最大值為.故選:D6、B【解析】因為時,夾角為鈍角或平角;而當(dāng)夾角為鈍角時,成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點:1向量的數(shù)量積;2充分必要條件7、A【解析】根據(jù)給定條件利用韋達(dá)定理結(jié)合等差數(shù)列性質(zhì)計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A8、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.9、D【解析】根據(jù)空間向量的線性運(yùn)算求解【詳解】由已知,故選:D10、B【解析】依據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個整數(shù)解,可化為只有一個整數(shù)解令,則當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,則當(dāng)時,取最大值,當(dāng)時,恒成立,的草圖如下:,,則若只有一個整數(shù)解,則,即故不等式只有一個整數(shù)解,則m的取值范圍是故選:B11、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個選項一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因為命題p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯誤;為真,故B正確;為假,故C錯誤;為假,故D錯誤.故選:B12、B【解析】首先根據(jù)題意設(shè)出拋物線的方程,利用點在曲線上的條件為點的坐標(biāo)滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設(shè)出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點的坐標(biāo),再求邊長,求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對稱性,不妨取點的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④14、【解析】首先利用展開式的二項式系數(shù)和是求出,然后即可求出二項式的常數(shù)項.【詳解】由題知展開式的二項式系數(shù)之和是,故有,可得,知當(dāng)時有.故展開式中的常數(shù)項為.故答案為:.【點睛】本題考查了利用二項式的系數(shù)和求參數(shù),求二項式的常數(shù)項,屬于基礎(chǔ)題.15、4【解析】可設(shè)為第一象限的點,,,求出,,化簡即得解.【詳解】解:可設(shè)為第一象限的點,,,由橢圓定義可得,由雙曲線的定義可得,可得,,由,可得,即為,化為,則故答案為:416、【解析】先求出直線所過的定點,當(dāng)該定點為弦的中點時弦長最短,利用點斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)答案見解析【解析】(1)函數(shù)零點的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解,再對a分類討論,即得函數(shù)的零點;(2)令,可得,得,再對二次函數(shù)的對稱軸分三種情況討論得解.【詳解】(1)由,可知函數(shù)零點的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解;當(dāng)時,方程可化為,得,由函數(shù)單調(diào)遞增,且值域為,有下列幾種情況如下:①當(dāng)時,方程沒有根,可得函數(shù)只有一個零點;②當(dāng)時,方程的根為,可得函數(shù)只有一個零點;③當(dāng)且時,方程的根為,由,可得函數(shù)有兩個零點和;由上知,當(dāng)或時,函數(shù)的零點為;當(dāng)且時,數(shù)的零點為和.(2)令,可得,由,,可得,二次函數(shù)的對稱軸為,①當(dāng)時,即,此時函數(shù)的最小值為;②當(dāng)時,即,此時函數(shù)的最小值為;③當(dāng),即,此時函數(shù)最小值為.【點睛】本題主要考查函數(shù)的零點問題,考查指數(shù)對數(shù)函數(shù)的圖象,考查函數(shù)的最值問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、答案見解析【解析】由已知條件可得,假設(shè)時,取最小值,則,若補(bǔ)充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補(bǔ)充條件是②,則可得,該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,若補(bǔ)充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數(shù)列的公差為d,當(dāng)時,,得,從而,當(dāng)時,得,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,由對任意,都有,當(dāng)?shù)炔顢?shù)列的前n項和存在最小值時,假設(shè)時,取最小值,所以;若補(bǔ)充條件是①,因為,,從而,由得,所以,由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以,故實數(shù)的取值范圍為若補(bǔ)充條件是②,由,即,又,所以.所以,由于該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,故實數(shù)不存在以下為嚴(yán)格的證明:由等差數(shù)列的前n項和存在最小值,則,得,所以,所以不存在k,使得取最小值,故實數(shù)不存在若補(bǔ)充條件是③,由,得,又,所以,所以由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以存在,使得取最小值,所以,故實數(shù)的取值范圍為19、(1)(2)點G在以AB為直徑的圓外【解析】解法一:(Ⅰ)由已知得解得所以橢圓E的方程為(Ⅱ)設(shè)點AB中點為由所以從而.所以.,故所以,故G在以AB為直徑的圓外解法二:(Ⅰ)同解法一.(Ⅱ)設(shè)點,則由所以從而所以不共線,所以銳角.故點G在以AB為直徑的圓外考點:1、橢圓的標(biāo)準(zhǔn)方程;2、直線和橢圓的位置關(guān)系;3、點和圓的位置關(guān)系20、(1)5(2)8km/h(3)答案見解析【解析】(1)列出關(guān)系式,根據(jù)當(dāng)v=12km/h,每小時的燃料費(fèi)為720元即可求解;(2)列出燃料費(fèi)的函數(shù)解析式,利用導(dǎo)數(shù)求其最值即可;(3)討論x的范圍,結(jié)合(2)的結(jié)論可得答案.【小問1詳解】設(shè)每小時的燃料費(fèi)為,則當(dāng)v=12km/h,每小時的燃料費(fèi)為720元,代入得.【小問2詳解】由(1)得.設(shè)全程燃料費(fèi)為y,則(),所以,令,解得v=0(舍去)或v=16,所以當(dāng)時,;當(dāng)時,,所以當(dāng)v=16時,y取得最小值,故為了使全程燃料費(fèi)最省,船的實際前進(jìn)速度應(yīng)為8km/h【小問3詳解】由(2)得,若時,則y在區(qū)間上單調(diào)遞減,當(dāng)v=x時,y取得最小值;若時,則y區(qū)間(8,16)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當(dāng)v=16時,y取得最小值;綜上,當(dāng)時,船的實際前進(jìn)速度為8km/h,全程燃料費(fèi)最?。划?dāng)時,船的實際前進(jìn)速度應(yīng)為(x-8)km/h,全程燃料費(fèi)最省21、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達(dá)定理可得到最終結(jié)果;(2)代入點坐標(biāo)可得到參數(shù)的值,設(shè)直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達(dá)定理可得到最終結(jié)果.【小問1詳解】設(shè)點,,點,,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設(shè),,,,直線的方程為,由,消去得,,,,即為定值22、(1)或;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論