版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025-2026學年江西省新余四中高二數(shù)學第一學期期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個袋中裝有大小和質地相同的5個球,其中有2個紅色球,3個綠色球,從袋中不放回地依次隨機摸出2個球,下列結論正確的是()A.第一次摸到綠球的概率是 B.第二次摸到綠球的概率是C.兩次都摸到綠球的概率是 D.兩次都摸到紅球的概率是2.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高二被抽取的人數(shù)為人,那么高三被抽取的人數(shù)為()A. B.C. D.3.設,為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.4.觀察下列各式:,,,,,可以得出的一般結論是A.B.C.D.5.已知拋物線的焦點為F,點P為該拋物線上的動點,若,則當最大時,()A. B.1C. D.26.已知圓,則圓C關于直線對稱的圓的方程為()A. B.C. D.7.若函數(shù)有兩個零點,則實數(shù)a的取值范圍是()A. B.C. D.8.已知數(shù)列的前項和滿足,記數(shù)列的前項和為,.則使得的值為()A. B.C. D.9.三棱柱中,,,,若,則()A. B.C. D.10.已知直四棱柱的棱長均為,則直線與側面所成角的正切值為()A. B.C. D.11.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.12.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓交于A,B兩點,過A,B分別做l的垂線與x軸交于C,D兩點,若|AB|=4,則|CD|=_____________.14.已知莖葉圖記錄了甲、乙兩組各名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________.甲組乙組15.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是___________.16.設函數(shù),則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點M,使得平面MEF平面SCD?若存在,求出點M的位置;若不存在,請說明理由18.(12分)在所有棱長均為2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求證:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.19.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點,并求此定點的坐標;20.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.21.(12分)已知直線方程為(1)若直線的傾斜角為,求的值;(2)若直線分別與軸、軸的負半軸交于、兩點,為坐標原點,求面積的最小值及此時直線的方程22.(10分)已知數(shù)列滿足,,且成等比數(shù)列(1)求的值和的通項公式;(2)設,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對選項A,直接求出第一次摸球且摸到綠球的概率;對選項B,第二次摸到綠球分兩種情況,第一次摸到綠球且第二也摸到綠球和第一次摸到紅球且第二次摸到綠球;對選項C,直接求出第一次摸到綠球且第二也摸到綠球的概率;對選項D,直接求出第一次摸到紅球且第二也摸到紅球的概率【詳解】對選項A,第一次摸到綠球的概率為:,故錯誤;對選項B,第二次摸到綠球的概率為:,故錯誤;對選項C,兩次都摸到綠球的概率為:,故正確;對選項D,兩次都摸到紅球的概率為:,故錯誤故選:C2、C【解析】利用分層抽樣求出的值,進而可求得高三被抽取的人數(shù).【詳解】由分層抽樣可得,可得,設高三所抽取的人數(shù)為,則,解得.故選:C.3、A【解析】設,表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設,由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)4、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)5、B【解析】根據(jù)拋物線的定義,結合換元法、配方法進行求解即可.【詳解】因為點P為該拋物線上的動點,所以點P的坐標設為,拋物線的焦點為F,所以,拋物線的準線方程為:,因此,令,,當時,即當時,有最大值,最大值為1,此時.故選:B6、B【解析】求得圓的圓心關于直線的對稱點,由此求得對稱圓的方程.【詳解】設圓的圓心關于直線的對稱點為,則,所以對稱圓的方程為.故選:B7、C【解析】函數(shù)有兩個零點等價于方程有兩個根,等價于與圖象有兩個交點,通過導數(shù)分析的單調性,根據(jù)圖象即可求出求出的范圍.【詳解】函數(shù)有兩個零點,方程有兩個根,,分離參數(shù)得,與圖象有兩個交點,令,,令,解得當時,,在單調遞增,當時,,在單調遞減,且在處取得極大值及最大值,可以畫出函數(shù)的大致圖象如下:觀察圖象可以得出.故選:C.【點睛】本題主要考查函數(shù)零點的應用,構造函數(shù)求函數(shù)的導數(shù),利用函數(shù)極值和導數(shù)之間的關系是解決本題的關鍵.8、B【解析】由,求得,得到,結合裂項法求和,即可求解.【詳解】數(shù)列的前項和滿足,當時,;當時,,當時,適合上式,所以,則,所以.故選:B.9、A【解析】利用空間向量線性運算及基本定理結合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.10、D【解析】根據(jù)題意把直線與側面所成角的正切值轉化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側面所成角的正切值為.故選:D.11、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A12、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出圓心和半徑,由于半徑為2,弦|AB|=4,所以可知直線過圓心,從而得,求出,得到直線方程且傾斜角為135°,進而可求出|CD|【詳解】圓,圓心(1,2),半徑r=2,∵|AB|=4,∴直線過圓心(1,2),∴,∴,∴直線,傾斜角為135°,∵過A,B分別做l的垂線與x軸交于C,D兩點,∴.故答案為:4【點睛】此題考查直線與圓的位置關系,考查兩直線的位置關系,考查轉化思想和計算能力,屬于基礎題14、【解析】根據(jù)中位數(shù)、平均數(shù)的定義,結合莖葉圖進行計算求解即可.【詳解】根據(jù)莖葉圖可知:甲組名學生在一次英語聽力測試中的成績分別;乙組名學生在一次英語聽力測試中的成績分別,因為甲組數(shù)據(jù)的中位數(shù)為,所以有,又因為乙組數(shù)據(jù)的平均數(shù)為,所以有,所以,故答案為:15、【解析】計算點漸近線的距離,從而得,由勾股定理計算,由雙曲線定義列式,從而計算得,即可計算出離心率.【詳解】設雙曲線右焦點為,因為的中點在雙曲線的漸近線上,由可知,,因為為中點,所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點睛】雙曲線的離心率是橢圓最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)16、【解析】由的導數(shù)為,將代入,即可求出結果.【詳解】因為,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標系,先求得平面SCD的一個法向量,再由求解;(2)假設存在點M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標系,,所以,設平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設存在點M,使得平面MEF平面SCD,,,設平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點,此時M與S重合.18、(1)證明見解析;(2)證明見解析.【解析】(1)通過計算·=0來證得AB1⊥BC.(2)通過證明A1C⊥AC1、A1C⊥AC1來證得A1C⊥平面AB1C1.【詳解】證明:(1)易知<>=120°,=+,則·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四邊形AA1C1C為菱形,所以A1C⊥AC1.因為·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.19、(1);(2)證明見解析,.【解析】(1)設兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進而得到的軌跡方程;(2),設,,,,設出直線方程,聯(lián)立方程組,利用韋達定理法及向量的數(shù)量積的坐標表示,即可得到定點.【小問1詳解】設兩動圓的公共點為,則有由橢圓的定義可知的軌跡為橢圓,設方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設,,設直線:,聯(lián)立方程組,可得,,,因為,所以有,把代入整理化簡得,或舍,因為點與點均不重合,所以直線恒過定點20、(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【解析】(1)求出直線過定點,得到在圓內部,故證明直線l與圓C相交;(2)設出點,利用垂直得到等量關系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓方程,聯(lián)立,求出相交弦的方程,即直線的方程,根據(jù)直線過的定點,得到,從而得到點Q恒在直線上.【小問1詳解】證明:直線過定點,代入得:,故在圓內,故直線l與圓C相交;【小問2詳解】圓的圓心為,設點,由垂徑定理得:,即,化簡得:,點M的軌跡方程為:【小問3詳解】設點,由題意得:Q、A、B、C四點共圓,且圓的方程為:,即,與圓C的方程聯(lián)立,消去二次項得:,即為直線的方程,因為直線過定點,所以,解得:,所以當m變化時,點Q恒在直線上.【點睛】本題的第三問是稍有難度的,處理方法是根據(jù)四點共圓,直徑的端點坐標,求出此圓的方程,與曲線聯(lián)立后得到相交弦的方程,是處理此類問題的關鍵.21、(1);(2)面積的最小值為,此時直線的方程為.【解析】(1)由直線的斜率和傾斜角的關系可求得的值;(2)求出點、的坐標,根據(jù)已知條件求出的取值范圍,求出的面積關于的表達式,利用基本不等式可求得面積的最小值,利用等號成立的條件可求得的值,即可得出直線的方程.【小問1詳解】解:由題意可得.【小問2詳解】解:在直線的方程中,令可得,即點,令可得,即點,由已知可得,解得,所以,,當且僅當時,等號成立,此時直線的方程為,即.22、(1);;(2)【解析】(1)由于,所以可得,再由成等比數(shù)列,列方程可求出,從而可求出的通項公式;(2)由(1)可得,然后利用錯位相減法求【詳解】解:(1)數(shù)列{an}滿足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比數(shù)列,所以,整理得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自助崗測試工程師面試培訓課程及資料含答案
- 2026年冀中職業(yè)學院單招職業(yè)技能測試題庫帶答案詳解
- 2026年貴州航空職業(yè)技術學院單招職業(yè)技能考試題庫及參考答案詳解1套
- 宜豐縣衛(wèi)健系統(tǒng)招聘合同制衛(wèi)技人員42名備考核心題庫及答案解析
- 2026年浙江育英職業(yè)技術學院單招職業(yè)技能測試題庫附答案詳解
- 2026年浙江農(nóng)林大學暨陽學院單招職業(yè)適應性考試題庫及參考答案詳解
- 2026年福建衛(wèi)生職業(yè)技術學院單招職業(yè)傾向性測試題庫附答案詳解
- 2025上海生物技術學院招聘生物技術學院課題組臨床前研究助理崗位1人備考核心題庫及答案解析
- 2026年湖南大眾傳媒職業(yè)技術學院單招職業(yè)傾向性測試題庫及參考答案詳解1套
- 2026年浙江越秀外國語學院單招綜合素質考試題庫含答案詳解
- 電梯整機安裝質量檢查記錄
- GB/T 30340-2013機動車駕駛員培訓機構資格條件
- GB/T 19215.1-2003電氣安裝用電纜槽管系統(tǒng)第1部分:通用要求
- GB/T 13298-2015金屬顯微組織檢驗方法
- 滴滴打車用戶出行習慣報告
- 核對稿-400單元開車
- 核對稿-300單元聯(lián)鎖
- 保密管理-保密教育培訓簽到簿
- 《中藥炮制技術》 教學課件大全
- CDA數(shù)據(jù)分析師Level Ⅱ考試題庫(含答案)
- CA6150普通車床說明書
評論
0/150
提交評論